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Summary

The convective wave equation models wave propagation in �owing media by including convection

and refraction e�ects. Thereby, the primary physical quantity is the scalar acoustic potential, which is

related to the acoustic pressure by the substantial derivative w.r.t time scaled by the mean density of

the medium. A standard Finite Element (FE) formulation of this partial di�erential equation results

in spurious modes and may even become unstable. Therefore, we present a FE formulation, which

preserves the skew symmetry of the convective wave operator resulting in a stable computational

scheme independent of the Mach number. The properties are studied by performing an eigenvalue

analysis.

1. Introduction

The convective wave equation (CWE) describes
acoustic wave propagation in �owing media. A sys-
tematic derivation of CWE has been provided in [1]
starting at the full set of compressible �ow equations
and applying a perturbation ansatz. The �nal par-
tial di�erential equation is similar to the standard
wave equation, but instead of the second order partial
time derivative it has a second order substantial time
derivative. Furthermore, in computational aeroacous-
tics, the reformulation of the acoustic perturbation
equations (see [2]) leads to the same convective wave
operator and the substantial derivative of the incom-
pressible �ow pressure as a source term. This par-
tial di�erential equation has again the scalar acous-
tic potential as the search for quantity and has been
named perturbed convective wave equation (PCWE)
[3]. Thereby, it can be shown that a standard Finite-
Element (FE) formulation leads to eigenvalues with a
strong real part. Furthermore, the magnitude of the
eigenvalues scale with the Mach number of the �ow.

In our contribution, we show the derivation of a sta-
ble FE formulation by applying an appropriate trans-
formation of the standard FE formulation. Thereby,
we follow ideas presented in [5], where a stable FE
formulation for the acoustic perturbation equations,
which are based on linearized mass and momentum
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conservation including convective operators and solv-
ing for the acoustic pressure and particle velocity, has
been presented. Furthermore, we demonstrate by an
eigenvalue analysis the strong reduction of the real
part of spurious eigenvalues, and thus the stability of
the computational scheme.

2. Finite Element Formulation

We consider the following homogeneous convective
wave equation

1

c20

D2ψ

Dt2
−∇ · ∇ψ = 0 (1)

as derived in [1] for the case of sound in �uids with
unsteady inhomogeneous �ow as well as in [3] for mod-
eling aeroacoustics phenomena. In (1) ψ denotes the
scalar acoustic potential, and c0 the speed of sound in
the medium. The substantial derivative D/Dt com-
putes by

D

Dt
=

∂

∂t
+ u · ∇ (2)

with u the mean �ow velocity (constant in time). In a
next step, we derive the weak formulation. In doing so,
we introduce an appropriate test function ϕ, multiply
(1) by it and integrate over the whole computational
domain Ω

1

c20

∫
Ω

ϕ
D2ψ

Dt2
dx−

∫
Ω

ϕ∇ · ∇ψ dx = 0 . (3)
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Expanding the substantial derivative in (3) results in

1

c20

∫
Ω

ϕ
∂2ψ

∂t2
dx

︸ ︷︷ ︸
I

+
1

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx

︸ ︷︷ ︸
IIa

+
1

c20

∫
Ω

ϕ
∂

∂t

(
u · ∇ψ

)
dx

︸ ︷︷ ︸
IIb

+
1

c20

∫
Ω

ϕ
(
u · ∇

)(
u · ∇

)
ψ dx

︸ ︷︷ ︸
III

+

∫
Ω

ϕ∇ · ∇ψ dx

︸ ︷︷ ︸
IV

= 0 . (4)

The term I is a standard bilinear form and needs no
special treatment. However, the terms IIa and IIb
are subjected to the mean �ow �eld, which is not nec-
essarily homogeneous. By exploring the property that
the mean �ow is time-independent, the two terms IIa
and IIb in (4) may be combined to

2

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx . (5)

The analysis of this term reveals that it has only �rst
order derivatives w.r.t space and therefore an integra-
tion by parts is not necessarily needed. However, as
pointed out in [4], the skew symmetry of the operator
has to be preserved also in the discrete form (obtained
after space discretization, e.g., with the FE method),
in order to achieve energy conservation and stabil-
ity. The eigenvalue analysis in Sec. 3 will demonstrate
that spurious modes arise and some of them even have
a strong positive real part, so that unstable computa-
tions are observed. Therefore, we follow the ideas in
[5] and �rst rewrite (5) by

2

c20

∫
Ω

ϕ∇ ·
(
u
∂ψ

∂t

)
dx . (6)

Here, the derivation just holds for the case that u is
solenoidal or in an FE setting, where u is piecewise
constant for each �nite element. Now, an integration
by parts can be performed to ensure skew symmetry,
and results in∫

Ω

ϕ∇ ·
(
u
∂ψ

∂t

)
dx = −

∫
Ω

∇ ·
(
ϕu
) ∂ψ
∂t

dx

+

∫
Γ

ϕ
(
u · n

) ∂ψ
∂t

ds

= −
∫
Ω

(
u · ∇

)
ϕ
∂ψ

∂t
dx

+

∫
Γ

ϕ
(
u · n

) ∂ψ
∂t

ds .(7)

Exploring this result, we may rewrite (5) using (7) by

− 1

c20

∫
Ω

(
u · ∇

)
ϕ
∂ψ

∂t
dx

+
1

c20

∫
Γ

ϕ
(
u · n

) ∂ψ
∂t

ds

+
1

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx , (8)

which will guarantee skew symmetry also in the space
discrete form. The surface integral may vanish for no-
slip boundary conditions in a computational �uid dy-
namics computation.
The term III is also integrated by parts, and for

the same assumption towards the mean �ow velocity
u as before, we arrive at

1

c20

∫
Ω

ϕ
(
u · ∇

)(
u · ∇

)
ψ dx

=
1

c20

∫
Ω

∇
(
uϕ
) (

u · ∇
)
ψ dx

= − 1

c20

∫
Ω

(
u · ∇

)
ϕ
(
u · ∇

)
ψ dx

+
1

c20

∫
Γ

ϕ
(
u · n

) (
u · ∇

)
ψ ds . (9)

The term IV in (4) is treated as usual and results in∫
Ω

ϕ∇ · ∇ψ dx = −
∫
Ω

∇ϕ · ∇ψ dx

+

∫
Γ

ϕn · ∇ψ ds . (10)

Applying a standard FE ansatz with appropriate
FE basis functions Ni(x)

ϕ ≈ ϕh =
∑
a

Na(x)ϕa(t)

ψ ≈ ψh =
∑
b

Nbx)ψb(t) (11)

results in the following semi-discrete Galerkin formu-
lation

M ψ̈
h

+ Cψ̇
h

+ Kψh = fh . (12)

In (12) ψh is an algebraic vector collecting all the un-
knowns of the scalar acoustic potential, a dot over a
variable denotes the derivative with respect to time,

i.e. ∂2ψh/∂t2 = ψ̈
h
, and fh the right hand side ac-

cording to a given source term or boundary condi-
tions. Furthermore, in (12) M , C, K ∈ Rneq × Rneq

are the mass, damping and sti�ness matrices with neq
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the number of unknowns, whose entries compute as
follows

Mab =
1

c20

∫
Ω

NaNb dx (13)

Cab = − 1

c20

∫
Ω

((
u · ∇

)
Na

)
Nb dx

+
1

c20

∫
Γ

Na

(
u · n

)
Nb ds

+
1

c20

∫
Ω

Na

(
u · ∇

)
Nb dx

− 1

c20

∫
Ω

(
u · ∇

)
Na

(
u · ∇

)
Nb dx

+
1

c20

∫
Γ

Na

(
u · n

) (
u · ∇

)
Nb ds (14)

Kab =

∫
Ω

∇Na · ∇Nb dx . (15)

3. Eigenvalue Analysis

For the investigation of spurious modes, we perform
computations for plane waves in a channel of length
L with uniform background �ow. As boundary con-
ditions, we set ψ(t, x = 0) = 0 and ψ(t, x = L) = 0.
For this case, the convective wave equation (1) may
be rewritten as [6]

∂2ψ

∂t2
+ 2Mc0

∂2ψ

∂x∂t
+ (M2 − 1)c20

∂2ψ

∂x2
= 0 . (16)

In (16) M denotes the Mach number computed by

M =
|u|
c0

.

For a plane wave, one can make the ansatz

ψ(x, t) = ψ̂ ej(kx−ωt)

with k the the wave number, ω the angular frequency
and j the complex unit. Substituting this ansatz into
(16) results in the dispersion relation

−ω2 + 2ωM c0 k − (M2 − 1) c20 k
2 = 0 . (17)

The solution for k by �xed ω reads as

k1,2 = −
ω
(
M c0 ∓ c0

)(
M2 c20 − c20

) = − ω

(M ± 1) c0
. (18)

The general solution for the one-dimensional waves
travelling within the channel are given by

ψ(x) = A1e
jk1x +A2e

−jk1x . (19)

By incorporation of the boundary conditions, one ob-
tains the eigenvalues analytically by

ωn =
c0πn

L
(1−M2) . (20)

The discrete eigenvalues are obtained by using the
ansatz

Ψh = Ψ est ; s = jω

and substituting it into (12), which results in(
s2M + sC + K

)
Ψ = 0 . (21)

This equation is satis�ed by the i-th latent root si,
and i-th latent vector Ψ of the λ-matrix problem [7],
so that

s2
iMΨi + siCΨi + KΨi = 0 ∀i ∈ 1..neq . (22)

For the numerical computation, we have computed
the matrices by our in-house research software CFS++
[8] and then applied Matlab using the function polyeig.
Homogeneous Neumann boundary conditions on the
horizontal boundaries ΓN and homogeneous Dirichlet
on the vertical boundaries ΓD are used (see Fig. 1).
The �rst smallest non zero eigenvalues should cor-
respond with the frequencies of the one dimensional
channel, i.e. λ ' jωn (higher values of λ correspond
to eigenfunctions oscillating in the height H of the
channel). Thereby, the discrete eigenvalues can be in-
terpreted as follows:

• If there are eigenvalues λ which do not coincide
with the analytical ones, we can say that these are
spurious modes.

• If the discrete eigenvalues have a positive real part,
the solution becomes unstable.

• Spurious modes with a large negative real part are
quickly damped and do not disturb the solution.

In this sense, we distinguish not only between physical
and spurious modes but also between good and bad

modes depending on the sign of their real part. For

Figure 1. Pseudo one dimensional channel with strongly
distorted elements.

the numerical evaluation of the discrete eigenvalues a
long and thin channel with a length to width ratio
of 20 : 1 is chosen. The channel is discretized with
distorted quadrilateral elements as displayed in Fig. 1.
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Initially the �ow velocity is set to zero, which means
that the eigenvalues of the standard wave equation
are computed (no convective terms). The result is dis-
played in Fig. 2, and the discrete eigenvalues are all
at the imaginary axis as indicated by the markers.
All discrete eigenvalues have zero real part and coin-
cide with the analytical ones. In contrast to the stable

Figure 2. Discrete eigenvalues for zero Mach number (stan-
dard wave equation).

computations with zero Mach number, the situation
looks di�erent when a constant mean �ow of Mach
numbers 0.1, 0.2, 0.3 is present. Now, the eigenvalues
of the convective wave equation as discussed in Sec. 2
has to be computed. In a �rst step, we use the stan-
dard formulation, which does not perform an integra-
tion by parts for terms IIa, IIb. Therefore, the skew
symmetry is not preserved at the discrete level. As
demonstrated by Fig. 3, a lot of spurious modes are
added to the system. Even more dramatically, spuri-
ous eigenvalues with a strong positive real part oc-
cur which are responsible for unstable computations.
Furthermore, Fig. 3 demonstrates that the positive

Figure 3. Discrete eigenvalues for di�erent Mach numbers
for standard formulation.

values of the spurious eigenvalues strongly increase
with the Mach number. In a second step, we per-
form the computation of the advanced formulation,
for which an integration by parts is performed for the

terms IIa, IIb. Thereby, the skew symmetry is pre-
served also at the discrete level. Figure 4 displays the
computed eigenvalues, and as one can see, the real
part of the spurious eigenvalues have been reduced by
several magnitudes, and do not increase with higher
Mach numbers. Thereby, the stability of this advanced

Figure 4. Discrete eigenvalues for di�erent Mach numbers
for advanced formulation.

formulation is demonstrated.

4. CONCLUSIONS

The convective wave equation takes into account con-
vection and refraction e�ects of waves propagating
through �owing media. A standard FE formulation
results in spurious modes and for increasing Mach
number the numerical solution may become unstable.
The introduced advanced FE formulation preserves
the skew symmetry of the convective wave operator
even at the discrete level, and therefore achieves en-
ergy conservation and stability. Successful application
to real-life problems can be found, e.g., in [3], where
the �ow induced sound of an axial fan has been com-
puted.
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