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Summary 
The vibration of a cylindrical shell is generated due to elastic waves propagating on the shell. The 
wave propagation is governed by a dispersion relation. The assumption of a thin shell allows the 
dispersion relation to be separated into three relations related to the propagation of flexural waves 
and two types of membrane waves. Above the ring frequency, those waves are clearly identified as 
flexural, shear and longitudinal waves. Below the ring frequency, the characteristics of those 
waves are identified with dependency of the direction of wave propagation. In this paper the 
dispersion relations are obtained theoretically and experimentally at two frequencies above and 
below the ring frequency. The experimental results of the dispersion relations have been obtained 
by using wavenumber analysis of in-plane surface vibration data obtained experimentally on a 
point-excited cylindrical shell. Those are compared with the theoretical results. The obtained 
dispersion relations are analysed to identify the characteristics of waves propagating on the 
vibrating cylindrical shell at frequencies around the ring frequency.  

PACS no. 43.40+s 

 
1. Introduction1 

The vibration of a cylindrical shell is generated due 
to elastic wave propagation on the shell. In order to 
understand vibration characteristics of the shell, it is 
necessary to understand the characteristics of elastic 
wave propagation on the shell. The basic idea [1] 
was introduced that waves propagating on a point-
excited cylindrical shell behave like waves 
propagating in a two-dimensional unbounded 
homogeneous anisotropic medium with excitation 
forces that are periodic in the transverse direction. 
The idea was used the to analyze the wave 
propagation on the cylindrical shell in [2]. The 
numerical results yielded the implication that major 
features of the thin plate model's prediction could 
hold relatively well, down to frequencies as low as 
twice the ring frequency of the cylindrical shell. 
The wave propagation on a cylindrical shell well 
below the ring frequency including a fluid-loading 
was examined in [3]. The general frequency 
characteristics of dispersion relation of elastic 
waves propagating on a vibrating cylindrical shell 
                                                      

 

was studied in [4].  
There is a significant change of characteristics of 
waves propagating on a cylindrical shell around the 
ring frequency. In this paper, the characteristics of 
elastic waves propagation on the shell around the 
ring frequency has been analyzed theoretically and 
experimentally. The assumption of a thin shell 
allows the dispersion relation to be separated into 
three relations related to the propagation of flexural 
waves and two types of membrane waves. Above 
the ring frequency, those waves are clearly 
identified as flexural, shear and longitudinal waves. 
Below the ring frequency, the characteristics of 
those waves are identified with dependency of the 
direction of wave propagation. The dispersion 
curves are obtained theoretically and experimentally 
at two frequencies above and below the ring 
frequencies. Those correspond to two and three 
curves below and above the ring frequency, 
respectively. The theoretical and experimental 
results of the dispersion curves are compared each 
other and are analysed to identify the characteristics 
of waves propagating on the vibrating cylindrical 
shell at frequencies around the ring frequency.  
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Here ݇଴ ൌ ݇ܽ  corresponds to the dimensionless 
wavenumber. ܦ௙௟௘௫ ൌ 0  gives the dispersion 
relation for flexural waves. The factor ܦ௠௘௠ is 
independent of the parameter ϵ , i.e. thickness h. 
௠௘௠ଵܦ ൌ 0, ௠௘௠ଶܦ ൌ 0  correspond to the 
dispersion relations of the different type of 
membrane waves. 
Considering the high frequency limit as Ω ≫ 1, the 
factor can be approximated as 
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௙௟௘௫ܦ ൌ 0, ௟௢௡௚ܦ	 ൌ 0		and		ܦ௦௛௘௔௥ ൌ 0  correspond 
to the dispersion relation of flexural, longitudinal 
and shear waves, respectively. Those can be 
approximated for moderate values of Ω as  
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Here ܦ௠௘௠ଵ ൌ 0 in equation (16) and ܦ௠௘௠ଶ ൌ 0 
in equation (20) correspond to the dispersion 
relation of plates. Therefore, for waves propagating 
in the axial direction ( ௞ߠ ൌ 0 ) at Ω  ൏ Ω௠	, 
௠௘௠ଶܦ		and	௠௘௠ଵܦ  are related to the dispersion 
relation of shear and longitudinal waves, 
respectively. However those are related to 
longitudinal and shear waves, respectively, at Ω 
൒	Ω௠. In low frequency limit (Ω ≪  ௠௘௠ଶ inܦ ,(1
equation 17 is approximated by 
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It indicates that the waves, being represented by 
௠௘௠ଶܦ ൌ 0 and propagating in the axial direction in 
low frequency limit, correspond to the longitudinal 
waves with the phase velocity ሺߩ/ܧሻଵ/ଶ 
corresponding to so-called “bar-velocity”. 
For waves propagating in the circumferential 
direction ( ௞ߠ ൌ 2ሻ/ߨ ௠௘௠ଵܦ ,  and ܦ௠௘௠ଶ  in 
equation 9 take the forms  
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௠௘௠ଵܦ  and ܦ௠௘௠ଶ  are associated with the 
dispersion relations to longitudinal and shear waves, 
respectively. The more analysis about the dispersion 
relation can be referred in [4, 9]. 
 
3. Experimental Analysis 

Fourier transform ܷ௡  in equation 2, i.e. the 
complex amplitude of waves propagating on the 
cylindrical shell, can be expressed in terms of the 
axial displacement component  ݑ	as  
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waves propagating in the axial direction. Above 
the ring frequency the waves governed by  
௠௘௠ଵܦ	 ൌ 0 correspond to longitudinal waves. 
The dispersion  curve representing ௠௘௠ଶܦ		 ൌ 0 
forms an inner closed curve. Those waves have 
characteristics for propagation near the axial 
direction: longitudinal waves below Ω௠ሺൌ 0.94 
for ν ൌ 0.28ሻ, and shear waves above Ω௠. Above 
the ring frequency 	ሺΩ ൌ 1ሻ,  the waves governed 
by ௠௘௠ଶܦ	 ൌ 0  correspond to shear waves, 
respectively. 
Figure 6(a) and (b) show the characteristics of the 
dispersion relations at dimensionless frequency 
Ω ൌ 0.98	and	Ω ൌ 1.1	 just below and above the 
ring frequency (Ω ൌ 1ሻ , respectively. Figure 6(a) 
shows that the dispersion curve representing 
௠௘௠ଵܦ	 ൌ 0  does not exist between  Ω௙	ሺൌ
0.96	for	ν ൌ 0.28ሻ and the ring frequency ሺ	Ω ൌ 1ሻ.  
 When waves spread with energy out from the 
source point over a plate made of homogeneous 
isotropic elastic material, the wave fronts form 
circles.  The waves propagating on the cylindrical 
shell made of homogeneous isotropic elastic 
material resembles the waves propagating on the 
plate quite higher than the ring frequency. However, 
the waves on the shell have the anisotropic nature of 
propagation at low frequencies up to frequencies 
somewhat higher than the ring frequency. The 
figure-8 of the dispersion curve is one of typical 
examples which shows the anisotropic nature of 
propagation. The outward normal direction to the 
dispersion curve at any given point gives the group 
velocity direction, or the direction at which energy 
flows, for a wave with the corresponding 
wavenumber and phase velocity direction. Thus, the 
less circular the wavenumber curve becomes, the 
more anisotropic the wave propagation on the shell 
are. The further detailed research about the 
anisotropic characteristics of waves on the 
cylindrical shells is underway.  
 
5. Conclusions  

In this paper, the characteristics of elastic wave 
propagation on the shell around the ring frequency 
have been analyzed theoretically and 
experimentally. The assumption of a thin shell 
allowed the dispersion relation to be separated into 
three relations related to the propagation of 
flexural waves and two types of membrane waves. 
Those relations have been used to identify the 
characteristics of the dispersion curves which have 
been obtained theoretically and experimentally. 
The dispersion curves correspond to two and three 

curves below and above the ring frequency, 
respectively. Above the ring frequency, three 
dispersion curves have been clearly identified to be 
those of flexural, shear and longitudinal waves, 
respectively. Below the ring frequency, the 
characteristics of two dispersion curves have been 
identified with dependency of the direction of 
wave propagation. Those results have been 
effectively used to identify the characteristics of 
waves propagation on the cylindrical shell around 
the ring frequency. 
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