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Summary

The vibration of a cylindrical shell is generated due to elastic waves propagating on the shell. The
wave propagation is governed by a dispersion relation. The assumption of a thin shell allows the
dispersion relation to be separated into three relations related to the propagation of flexural waves
and two types of membrane waves. Above the ring frequency, those waves are clearly identified as
flexural, shear and longitudinal waves. Below the ring frequency, the characteristics of those
waves are identified with dependency of the direction of wave propagation. In this paper the
dispersion relations are obtained theoretically and experimentally at two frequencies above and
below the ring frequency. The experimental results of the dispersion relations have been obtained
by using wavenumber analysis of in-plane surface vibration data obtained experimentally on a
point-excited cylindrical shell. Those are compared with the theoretical results. The obtained
dispersion relations are analysed to identify the characteristics of waves propagating on the

vibrating cylindrical shell at frequencies around the ring frequency.

PACS no. 43.40+s
1. Introduction

The vibration of a cylindrical shell is generated due
to elastic wave propagation on the shell. In order to
understand vibration characteristics of the shell, it is
necessary to understand the characteristics of elastic
wave propagation on the shell. The basic idea [1]
was introduced that waves propagating on a point-
excited cylindrical shell behave like waves
propagating in a two-dimensional unbounded
homogeneous anisotropic medium with excitation
forces that are periodic in the transverse direction.
The idea was used the to analyze the wave
propagation on the cylindrical shell in [2]. The
numerical results yielded the implication that major
features of the thin plate model's prediction could
hold relatively well, down to frequencies as low as
twice the ring frequency of the cylindrical shell.
The wave propagation on a cylindrical shell well
below the ring frequency including a fluid-loading
was examined in [3]. The general frequency
characteristics of dispersion relation of elastic
waves propagating on a vibrating cylindrical shell
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was studied in [4].

There is a significant change of characteristics of
waves propagating on a cylindrical shell around the
ring frequency. In this paper, the characteristics of
elastic waves propagation on the shell around the
ring frequency has been analyzed theoretically and
experimentally. The assumption of a thin shell
allows the dispersion relation to be separated into
three relations related to the propagation of flexural
waves and two types of membrane waves. Above
the ring frequency, those waves are clearly
identified as flexural, shear and longitudinal waves.
Below the ring frequency, the characteristics of
those waves are identified with dependency of the
direction of wave propagation. The dispersion
curves are obtained theoretically and experimentally
at two frequencies above and below the ring
frequencies. Those correspond to two and three
curves below and above the ring frequency,
respectively. The theoretical and experimental
results of the dispersion curves are compared each
other and are analysed to identify the characteristics
of waves propagating on the vibrating cylindrical
shell at frequencies around the ring frequency.
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2. Theoretical Analysis

2.1 Dynamic equation and dispersion
relation

The vibration of the cylindrical shell with nominal
radius a and thickness h is described in terms of
displacement vector V with components of u, v and
w in radial (r), circumferential (¢) and axial (z)
directions in Figure 1. The displacement field can
be described using Donnell’s thin shell dynamic
equation [5] that takes the form as

LV=F (1)

Figure 1. Cylindrical shell excited by a point force

where Lis a linear operator [6]. F denotes the
external force vector applied at z = z'. The exciting
force at angular frequency w generates vibration of
the shell. The vibration of the shell is generated due
to propagation of elastic wave. This physical idea
allows the response to be taken as spatial Fourier
integral [7]. The axial component of displacement
vector, for example, with the supressed time
dependent e ~i“t is expressed as

u(e,z,w)

17 -
- Z — f U, (k, w) eMPeitsdk,  (2)

where k, and n correspond to the axial wavenumber
and the circumferential mode as n = k,, a with the

circumferential wavenumber k,, respectively. The
Fourier transform U,, corresponds to the complex

amplitude of the axial displacement component, that
is related to waves propagating in the direction of
the wavenumber vector with the angle 6, as

k=kyé, + k,€, = ksinO, &, + k cosbyé,. (3)

Here &, and &, denote the unit vector in the
corresponding direction. The algebraic equations
governing the complex amplitudes U,,, V,, and W,
are obtained from equation 1 as

U,) (O
WEHE
Wo) \Fzn

where [L,,] is the linear operator matrix obtained by
applying the Fourier integral into the equation 1.
F,,, denotes the Fourier transform of the radial point
force.

For a nontrivial solution of equation 4, the
determinant of the coefficient matrix should be zero
as

det([L]) = D(n, k,, w)

= (ke - 07)(@* - k) (02 -

1—v
kz)
2

1—v
+T{(1 —v?)k*cos*0,
— (2v + 3)k?c0s?8,0?
— k%sin%6,0%} + Q* = 0. (5)

Here the dimensionless frequency Q = w/w, where
w, = (1/a){E/p(1 —v?)}¥/? denotes the ring
frequency of the cylinder. E, p and v correspond to
Young’s modulus, density and Poisson’s ratio,
respectively. Equation 5 is called the dispersion
relation which governs the wave propagation on the
vibrating cylindrical shell. Here it is also called the
exact dispersion relation.

2.2 Analysis of dispersion relation

Wave propagation of the waves is governed by the
dispersion relation in equation 5. The waves consist
of propagating waves and exponentially decaying
waves, that are determined with dependency on
nature of roots of the dispersion relation.
Propagating waves include flexural and two types
of membrane waves.

For thin shells with h/a <1/20 (or e = h?/(12a% <

2.1 x 10™4)[8], the function D is factored [2,4] to

D = DflexDmem = DflexDmemleemZ (6)
where

Dfjex = eko* — Q% + (1 —v?)cos*o, )
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1-v

= TDmemleemZ- ®)

Dimem
Here,
Dimem1 = (Hl - koz)i Demz = (Hy — koz) (9)

where

oy =y LVl (10)

L, = (1 —v){(1—v?)cos*8, — 0%}
3—v

2
1_1+v208+1—v2 Q6_}_1—1/
8= g 2 P 4

p=1-23-v)cos?0; + 4(1 — v)cos* 6,
q=1+4(1+v)cos? 6, —4(1 — v®)cos* 6, .

Here ky = ka corresponds to the dimensionless
wavenumber. D, =0 gives the dispersion
relation for flexural waves. The factor D,,ep, IS
independent of the parameter €, i.e. thickness h.
Dimem1 =0, Dypemz =0 correspond  to  the
dispersion relations of the different type of
membrane waves.

Considering the high frequency limit as Q > 1, the
factor can be approximated as

1—v
I, =— ot + T{l + 2(1 + v)cos?6, 102

2
qQ*

Dftex = €ko* — @2 (12)
Dpem1 = 0% — k02 = Dlong (12)
2 1—
Dpmemz = 1—v (-Q'Z - Tvkoz) = Dshear- (13)

Dfjex = 0, Dyjong = 0 and Dgpeqr = 0 correspond
to the dispersion relation of flexural, longitudinal
and shear waves, respectively. Those can be
approximated for moderate values of (0 as

Diong = Q% — ko® — (sin?6y + vcos?6))? (14)

1-v
Dsnear = Q% — 2 k02

—2(1 —v)sin?0,cos?0, (15)

For waves propagating in the axial direction
(Bx = 0), Dpyem1 and D,y ez in equation 9 take the
forms [4]

: (QZ _1- ka2> (16)

Dimem1 =

1—v 2
*@-1y
Dimemz = 02 — (1 — Vz) - kO (17)
at Q < Q,, where
1—-—v)(1+2v
Q= {( ) )}1/2 (18)

1+v
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which corresponds to Q,, = 0.94 with v = 0.28.
Butat Q > Q,, those take the opposite forms as

02(02 — 1)

Dmem1 = - (1=v) ko (19)

2 , 1—-v
Dnemz =7 (02 =—"k?)  (20)
Here Dypem1 = 0 in equation (16) and Dyemz = 0
in equation (20) correspond to the dispersion
relation of plates. Therefore, for waves propagating
in the axial direction (6, =0) at QO <Q,,
Dinem1 and Dyem, are related to the dispersion
relation of shear and longitudinal waves,
respectively. However those are related to
longitudinal and shear waves, respectively, at Q
> Q. In low frequency limit (Q < 1), Dyeme IN
equation 17 is approximated by

0? 2
Dinema = 1_—112 — ko (21)
It indicates that the waves, being represented by
Dimem2 = 0 and propagating in the axial direction in
low frequency limit, correspond to the longitudinal
waves with the phase velocity (E/p)'/?
corresponding to so-called “bar-velocity”.
For waves propagating in the circumferential
direction ( 6 =1/2) , Dpmem1 and Dpema N
equation 9 take the forms

Dimem1 = (QZ -1 - k02 (22)
2 , 1—=v
Dmemz = 7 (02 = —"k?)  (23)
Dpmem1 and Dyemo, are associated with the

dispersion relations to longitudinal and shear waves,
respectively. The more analysis about the dispersion
relation can be referred in [4, 9].

3.  Experimental Analysis
Fourier transform U, in equation 2, i.e. the
complex amplitude of waves propagating on the

cylindrical shell, can be expressed in terms of the
axial displacement component u as

Un(kz,ﬂﬂ

1 o
- Z o fu(qo,z,w) etkzZe™Pdpdz (24)

It means that the amplitudes of waves propagating
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in the direction of wavenumber vector k = k<pé¢, +

k,é, can be evaluated if the vibration field data is
experimentally measured on the cylindrical shell
and is processed with equation 24.

The experimental model is a finite cylindrical shell
made of stainless steel. The dimensions of the shell
are: a=0.076m, h=1.5mm, L=0.93m. In order to
approximate the free-free boundary conditions at
both ends of the shell, the shell was held between
two aluminium end caps with four uniformly
spaced pieces of neoprene along each end of the
shell as shown in Figure 2. The shell was excited
by a piezoelectric shaker located inside of the shell
and 0.32L above the bottom of the shell. The
shaker was driven at 18,275 Hz (= 1.65 Q) and
9,238 Hz (= 0.84 Q). The scanning laser Doppler
vibrometry system was used to measure the in-
plane vibration of the shell. The detailed
description about the experimental system can be
found in [9,10]. Two different wave fields were
generated on the regions of the shell above and
below the excitation point. The axial displacement
was measured at 32x32 points on the surface of
the shell above the excitation point.
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Figure 2. Point-excited experimental cylindrical shell

The data of experimental axial displacement on the
shell was processed by means of spatial FFT using
equation 24. The magnitude of the corresponding
Fourier transform U,, can be expressed in a three-
dimensional picture for the wavenumber region.
This result is called a wave spectrum. From the
wave spectrum, we can find the magnitude and
types of waves occurring at the excitation frequency,
and also can estimate the dispersion relations of
waves.

4. Results

Figure 3. Wave spectrum of the experimental axial
displacement fields measured at (a) 9,238 Hz (=
0.84 ) and (b)18,275 Hz (= 1.65 ).
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Figure 4. Comparison between the wave number
reconstruction from the experimental data (o) and
results from the theoretical exact dispersion relation (-):
(@) 9,238 Hz (= 0.84 12) and (b)18,275 Hz (= 1.65 ).
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The dispersion curves represented by the
dispersion relation can be evaluated from the peaks
in the wave spectra above and below the ring
frequency in Figure 3. Figure 4 shows comparison
of the experimental result for the dispersion curves
with the theoretical prediction for the exact
dispersion relation in equation 5. It shows good
agreement between the measured and predicted
dispersion curves. The dispersion curve in Figure
4(a) shows one of low frequency characteristics of
a figure-8 shaped dispersion curve below the ring
frequency (Q =1). The dispersion curves in
Figure 4(b) show that one of high frequency
characteristics of circle shaped dispersion curves
that represent waves propagating on a plate.
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Figure 5. Comparison between of the exact dispersion
curves represented by D = 0(-) and the approximate
dispersion curves represented by Dpemi = 0()
Dimemz = 0 (x) and D = 0 (°) at (a) 9,238 Hz
(= 0.84 2)and (b) 18,275 Hz (= 1.65 12).

The characteristics of the dispersion relation in
Figure 4 are more clearly identified by comparing
the exact dispersion curves represented by D =0
with the approximate dispersion curves represented
by  Dmem1 =0, Dinemz = 0 and Dflex =0 in
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Figure 5. In Figure 5(a) the flexural waves are
clearly identified as small circles on the top and
bottom portions of the figure 8 curve which are
defined by propagation angle 6, defined by

7] < 16k] < |7 — 6] (25)
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Figure 6. Comparison between of the exact approximate
dispersion curves represented by D =0 (-) and the
approximate dispersion curves represented by D,,om1 =
0 (), Dypemz = 0 (x) and Dgjee = 0 (o) at (a) 10,809
Hz (= 0.98 2) and (b) 12,133 Hz (= 1.1 ).

oz 1

1_v2}4 (= 20.7° for Q=
0.84 and v = 0.28) is determined from equation 7.
The dispersion curves representing D,,z,,; = 0 for
membrane waves form the center of the figure-8.
Those curves form two open curves which
approximately resemble parabolas. Those waves
have characteristics for propagation near the axial
direction: shear waves below Q,, (= 0.94 for
v=0.28) , and longitudinal waves between
Qo (= 0.94 for 0.28) and Qf (= 0.96 for v = 0.28).
In other directions up to the direction defined by
|0x| < 0, those are associated with membrane
waves whose phase velocities are much smaller
than the speeds of either longitudinal or shear

where

0r = cos™{
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waves propagating in the axial direction. Above
the ring frequency the waves governed by
Dinem1 = 0 correspond to longitudinal waves.

The dispersion curve representing D,emz = 0
forms an inner closed curve. Those waves have
characteristics for propagation near the axial
direction: longitudinal waves below Q,,(= 0.94
for v = 0.28), and shear waves above Q,,. Above
the ring frequency (Q = 1), the waves governed
by Dpemz =0 correspond to shear waves,
respectively.

Figure 6(a) and (b) show the characteristics of the
dispersion relations at dimensionless frequency
Q) =098and Q = 1.1 just below and above the
ring frequency (Q = 1), respectively. Figure 6(a)
shows that the dispersion curve representing
Dpmem1 =0 does not exist between Qf (=
0.96 for v = 0.28) and the ring frequency (Q = 1).
When waves spread with energy out from the
source point over a plate made of homogeneous
isotropic elastic material, the wave fronts form
circles. The waves propagating on the cylindrical
shell made of homogeneous isotropic elastic
material resembles the waves propagating on the
plate quite higher than the ring frequency. However,
the waves on the shell have the anisotropic nature of
propagation at low frequencies up to frequencies
somewhat higher than the ring frequency. The
figure-8 of the dispersion curve is one of typical
examples which shows the anisotropic nature of
propagation. The outward normal direction to the
dispersion curve at any given point gives the group
velocity direction, or the direction at which energy
flows, for a wave with the corresponding
wavenumber and phase velocity direction. Thus, the
less circular the wavenumber curve becomes, the
more anisotropic the wave propagation on the shell
are. The further detailed research about the
anisotropic  characteristics of waves on the
cylindrical shells is underway.

5. Conclusions

In this paper, the characteristics of elastic wave
propagation on the shell around the ring frequency
have  been  analyzed theoretically  and
experimentally. The assumption of a thin shell
allowed the dispersion relation to be separated into
three relations related to the propagation of
flexural waves and two types of membrane waves.
Those relations have been used to identify the
characteristics of the dispersion curves which have
been obtained theoretically and experimentally.
The dispersion curves correspond to two and three

curves below and above the ring frequency,
respectively. Above the ring frequency, three
dispersion curves have been clearly identified to be
those of flexural, shear and longitudinal waves,
respectively. Below the ring frequency, the
characteristics of two dispersion curves have been
identified with dependency of the direction of
wave propagation. Those results have been
effectively used to identify the characteristics of
waves propagation on the cylindrical shell around
the ring frequency.
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