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Summary

Acoustic source localization has become an important task in monitoring and designing products. In

the last years, considerable improvements have been achieved in acoustic source localization using

microphone arrays. However, main restrictions are given by simpli�ed source models and describing

the transfer function between source and microphone signal using Green's function for free radiation.

Therefore, re�ecting (or partially re�ecting) surfaces are not really considered, and the method of us-

ing mirror sources is quite limited. To overcome these limitations, we propose an inverse scheme based

on a constrained minimization problem. In the provided inverse scheme a cost functional is minimized

such that the Helmholtz equation with source terms is ful�lled. This approach aims at �nding the

position and strength of all sources. The reconstruction is based on solving the corresponding partial

di�erential equation in the frequency domain (Helmholtz equation) by applying the Finite Element

Method (FEM) considering the actual boundary conditions as given in the measurement setup. To

recover the source location the inverse scheme utilizes a sparsity promoting Tikhonov functional to

match measured (microphone signals) and simulated pressure. The applicability and the additional

bene�t of the inverse scheme compared to frequency domain beamforming will be demonstrated.

PACS no. 43.60.Jn, 43.66.Qp, 43.60.Fg

1. Introduction

Acoustic source localization techniques in combina-
tion with microphone array measurements have be-
come an important tool in the development of new
products. Moreover, these techniques can be used for
failure diagnosis and monitoring as well as for sound
design or noise reduction tasks. Thereby, a common
technique is acoustic beamforming. It is used to de-
termine source locations and distributions, measure
acoustic spectra for complete models and subcompo-
nents, and project results from the array to far �eld
points. Beamforming techniques are based on evaluat-
ing simultaneously collected sound pressure data from
microphone array measurements. The sound pres-
sure obtained at di�erent microphone positions are
mapped to an image of the acoustic source �eld. This
so called beamform map indicates the location and
strength of acoustic sources.
The fundamental processing method, Frequency Do-
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main Beamforming (FDBF) [1] is robust and fast.
Herein, the beamform map a is computed by

a(w) = w̄TCw̄, (1)

with w the steering vector and C the cross spectral
matrix of the microphone signals. A bar denotes com-
plex conjugation and T a transposition. Thereby, a
certain model for the acoustic source and sound �eld
is assumed. Most beamforming algorithms models the
acoustic source by monopols, so that the transfer func-
tion between source and microphone is described by
Green's function for free radiation. The steering vec-
tors are therefore given by the free-space Green's func-
tion. In literature di�erent formulations of the steering
vector can be found [2].
The resolution and the dynamic of FDBF is limited.
The theoretical resolution, i. e. the smallest distance
of two sources that can be resolved, is usually given
through the Rayleigh [3] as well as by the Sparrow
limit [4]. The limitation of the resolution and dynamic
are caused by the Point Spread Function (PSF) of the
microphone array, which is the convolution of the spa-
tial impulse response of the array with a single point
source. It has a strong and wide main lobe as well as
strong side lobes for low frequencies, so that weaker
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sources may be hidden. To overcome these drawbacks,
one can use deconvolution techniques, e.g. DAMAS
[5], Clean-SC [6] etc., which convert the raw FDBF
map (1) into a deconvoluted source map, resulting in
higher resolution and dynamic range. In [7] and [8]
one can �nd a detailed comparison between di�erent
deconvolution techniques.
However, main restrictions are given by the simpli-
�ed source model and describing the transfer func-
tion between source and microphone using Green's
function for free radiation. Therefore, re�ecting (or
partially re�ecting) surfaces are not really consid-
ered, and the method of using mirror sources is quite
limited. In our approach we solve the corresponding
partial di�erential equation in the frequency domain
(Helmholtz equation) with the actual boundary condi-
tions as given in the measurement setup and solve the
inverse problem of matching measured (microphone
signals) and simulated pressure.
The rest of the paper is organized as follows. In Sec-
tion 2, the physical and mathematical model will be
presented. Afterwards, in Sec. 3 the optimization ap-
proach based on the adjoint method and its numerical
scheme will be discussed. In Sec. 4 numerical results
on a simpli�ed SAE Body in 3D are shown. At the
end, the �ndings are summarized and an outlook to
further research will be given.

2. Physical and mathematical model

The physical model is given by the Helmholtz equa-
tion in the acoustic domain Ωacou, which is extended
by a Perfectly Matched Layer (PML) formulation to
mimic the Sommerfeld radiation condition. Therefore,
the following generalized form of the Helmholtz equa-
tion on Ω = Ωacou ∪ ΩPML is considered

∇ ·
(
D∇p

)
+ bk2p = σin in Ω, (2)

where k ∈ R denotes the wave number, σin(x) the
searched for acoustic sources and

D(x) =


diag

(
ηy(y)ηz(z)
ηx(x) , ηz(z)ηx(x)

ηy(y) ,
ηx(x)ηy(y)
ηz(z)

)
in ΩPML

1 in Ωacou

b(x) =

{
ηx(x)ηy(y)ηz(z) in ΩPML

1 in Ωacou

with appropriately chosen complex valued functions
ηx, ηy, ηz (for details see [9])

1. On the whole bound-
ary of Ω we impose homogeneous Neumann conditions
part of them just as a simple way to close the outer

1 Since the identi�cation is done separately for each �xed fre-
quency, the dependency on ω is neglected in the notation.

boundary of the PML domain, part of them to model
the sound-hard boundary part of the acoustic domain.
The weak form of (2) including the Neumann condi-
tions is derived by testing with an arbitrary complex
valued function v ∈ V∫

Ω

(
(D∇p) ·∇v̄ − bk2pv̄

)
dx

= −
∫

Ω

σinv̄ dx ds ∀v ∈ V , (3)

where a bar over a variable denotes its complex con-
jugate. In order to include delta pulses as well, we
consider not only sound sources as regular functions
of the space variable, but as elements of the dual V ∗,
so that (3) becomes

A(p, v) =

∫
Ω

(
(D∇p) ·∇v̄ − bk2pv̄

)
dx

= −〈σin, v̄〉V ∗,V ∀v ∈ V . (4)

Now, the considered inverse problem is to reconstruct
σin from pressure measurements

pms
i = p(xi) , i = 1, . . . ,M (5)

at the microphone positions x1, . . . ,xM . For the
acoustic sources we make the following ansatz

σin =
N∑
j=1

aje
iϕjδxj (6)

with the searched for amplitudes a1, a2, ..., aN ∈ R
and phases ϕ1, ϕ2, ..., ϕN ∈ [−π/2, π/2]. Here, N de-
notes the number of possible sources and δxj the delta
function at position xj .

3. Optimization based source identi�-

cation

The following constrained optimization problem by
means of Tikhonov regularization have to be solved

min
p∈U,a∈RN ,ϕ∈[−π2 ,

π
2 ]N

J(p, a, ϕ) s.t. ∀v ∈ V :

A(p, v) = −Re

 N∑
j=1

aje
iϕjδxj

 (7)

where a = (a1, . . . , aN ), ϕ = (ϕ1, . . . , ϕN ) and

J(p, a, ϕ) =
1

2

M∑
i=1

|p(xi)− pms
i |2

+α
N∑
j=1

∣∣∣aj∣∣∣q + β
N∑
j=1

ϕ2
j .

To pick the few true source locations from a large
number N of trial sources sparsity of the reconstruc-
tion is desired. One can enhance sparsity, when the

Euronoise 2018 - Conference Proceedings

- 2598 -



exponent q ∈ (1, 2] is chosen close to one [10]. Fur-
thermore, the regularization parameters α, β are cho-
sen according to the sequential discrepancy principle
[11], where β = α = α02−m with m the smallest ex-
ponent such that following inequality√√√√ M∑

i=1

(p(xi)− pms
i )

2 ≤ ε (8)

is ful�lled. Here, ε denotes the measurement error. We
can expect this to lead to a convergent regularization
method [12].
In a next step, we want to derive the �rst order

optimality conditions and consider the following La-
grange functional

L(a, ϕ, p, z) = J(p, a, ϕ) +A(p, z)

+
N∑
j=1

ajRe
(
eiϕjδxj

)
,

with some adjoint state z. Due to regularity of the
constraint a minimizer has to satisfy the following op-
timality conditions:

0 =
∂L
∂aj

(a, ϕ, p, z) (9)

0 =
∂L
∂ϕj

(a, ϕ, p, z) (10)

0 =
∂L
∂p

(a, ϕ, p, z)[w] (11)

0 =
∂L
∂z

(a, ϕ, p, z)[v]. (12)

The fourth optimality condition (12) is just the state
equation (7), whereas (11) is the adjoint equation for
z = z(a, ϕ), whose strong form (in terms of z̄) is

∇ ·D∇z̄ + bk2z̄ = −
M∑
i=1

(p(xi)− pms
i )δxi in Ω

n ·D∇z̄ = 0 on ∂Ω . (13)

To carry out, e.g., some gradient method for solving
this optimality system, the gradient of the reduced
cost functional is computed via

∂j

∂ai
(a, ϕ) =

d

dai

(
J(p(a, ϕ), a, ϕ)

)
=

d

dai

(
L(p(a, ϕ), a, ϕ, z(a, ϕ))

)
=
∂L
∂p

(p(a, ϕ), a, ϕ, z(a, ϕ))
∂p

∂ai
(a, ϕ)

+
∂L
∂ai

(p(a, ϕ), a, ϕ, z(a, ϕ))

+
∂L
∂z

(p(a, ϕ), a, ϕ, z(a, ϕ))
∂z

∂ai
(a, ϕ)

=
∂L
∂ai

(p(a, ϕ), a, ϕ, z(a, ϕ)) .

Figure 1. Computational setup.

Analogously, the derivative w.r.t ϕi have to be per-
formed. Due to the special choice of amplitude and
phase in (6), we obtain for the actual physical quan-
tities

Amplitude : |aj |

Phase :


ϕj if ϕ ≥ 0

ϕj + 2π if ϕ < 0

}
if aj > 0

ϕj + π if aj < 0 .

For the practical realization, a minimization by a gra-
dient method with Armijo line search is applied.

4. Numerical results

To demonstrate the applicability of the inverse scheme
in 3D, we chose a numerical example that is simi-
lar to a setup in wind tunnel measurements, see Fig.
1. It consists of a simpli�ed SAE Type 4 body [13],
where two acoustic sources with equal intensity are
positioned. One source is placed near the side mir-
ror and one near the wheel housing. The frequency of
both sources was chosen to 500Hz. The �oor is fully
re�ective (sound hard) as well as the SAE body. To
approximate free radiation, a perfectly matched layer
(PML) on the remaining �ve sides is used. The speed
of sound is assumed to be 343 m/s. To get realistic
pressure values at the microphone positions, we per-
form a forward simulation on a much �ner computa-
tional grid as then used for the identi�cation process.
The �ne grid had approximately 4.6 million degrees of
freedom, whereas the coarse grid used for the inverse
scheme had about 0.5 million degrees of freedom. We
also made the PML region of the �ne grid twice as
thick than on the coarse grid. Additionally, random
noise was added to the simulated pressure data re-
sulting in a signal to noise ratio of 26 dB. Moreover,
the microphone positions in the �ne and coarse dif-
fer slightly from each other to get a realistic situa-
tion. Thereby three di�erent microphone con�gura-
tions have been considered for the source localization.
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Figure 2. Di�erent microphone con�gurations (dimension in m).

Figure 3. Localization results using Clean SC.

The con�gurations are depicted in Fig. 2. In con�g-
uration a) three grid arrays with in total 165 micro-
phones were used. These equally spaced microphone
arrays (spacing of 0.34m) were placed left, right and
over the simpli�ed SAE Body. Additionally, in con�g-
uration b) another three grid arrays were placed left,
right and over the body, but at di�erent planes (in to-
tal there are 124 microphones). Also the grid spacing
for the arrays were increased from 0.34m to 0.68m.
At the third con�guration c) 98 microphones on two
circle and four semicircle arrays were used.

First of all, a beamforming algorithm was used
to identify the acoustic sources in the source region.
Hereby, meaningful results in 3D can be achieved by
deconvolution algorithms like Clean-SC [6]. In Fig. 3
one can see the results using the three di�erent mi-
crophone arrangements. Due to the fact that the two
acoustic sources are coherent, the algorithm just will
�nd one of the sources. Looking at Tab. I the local-
ization results in detail are given and one can see
that Clean SC performs quite well. However, the real
source distribution (see Fig. 4 (top-left)) can not be
reconstructed and also the phase information is lost.
Further, using identi�ed sources from beamforming

Table I. Localization results (detail).

Source Wheel Mirror

Con�g. x y z x y z

original 1.30 0.30 -1.00 0.70 0.90 1.25

a) 1.30 0.33 -0.97 - - -

b) 1.30 0.39 -1.04 - - -

c) - - - 0.70 0.95 1.40

algorithms to reconstruct the sound pressure �eld will
led to wrong results.
Next, the applicability of the inverse scheme in 3D

is demonstrated. To this end, the regularization pa-
rameters were set to α = 0.125 and β = 0.125. For the
exponent q, the value 1.1 was chosen to favor sparse
reconstruction. The searched for sources are modeled
by delta peaks for each of the 105.651 nodes within
the source region Ωsc. The implemented optimization
based parameter identi�cation algorithm is based on a
gradient method with Armijo line search exploring the
adjoint method to e�ciently obtain the gradient of the
objective function. The maximum number of reduc-
ing the regularization parameters were set to 15. To
identify the acoustic source from the simulated pres-
sure values the total elapsed CPU time (stand-alone
PC with an Intel Xeon E5-2697A, 2.60GHz processor)
was about 74 hours. The results of the reconstruction
with the di�erent microphone con�gurations are de-
picted in Fig. 4. As one can see, the source distribution
was reconstructed in a good manner. Here, the best re-
sult was achieved by con�guration b) with the micro-
phones at di�erent planes. One can see that there are
the fewest source artefacts. Hence, the microphone po-
sitions and the number of microphones are important
for the quality of the identi�cation. Next, using the
identi�ed source distribution and performing a sound
�eld computation gives the acoustic �elds displayed in
Fig. 5. Here, con�guration a) and b) provide a good
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Figure 4. Amplitude of the source normalized the to source
strength of the original source (unit in dB) (top-left) Orig-
inal source (top-right) Identi�ed source with a) (bottom-
left) Identi�ed source with b) (bottom-right) Identi�ed
source with c).

Figure 5. Computed acoustic sound pressure level (top-
left) Original sources (top-right) Identi�ed sources with
a) (bottom-left) Identi�ed sources with b) (bottom-right)
Identi�ed sources with c).

Table II. Relative L2 error between measured and com-
puted pressure values at the microphone positions.

Con�guration a) b) c)

Error 2.93% 2.05% 5.54%

agreement with the original sound �eld. To quantify
the achieved error the deviation between the acoustic
pressure at the microphone positions was computed
according to (8) and normalized to the L2-norm of
the measured pressure values (see Tab. II).
These results demonstrate the applicability of the

inverse scheme in 3D. Hereby, the best agreement

between the original and computed sound �eld was
achieved by con�guration b). A spatial distribution of
the microphones around the sound source could also
improve the localization result, therefore the question
of optimal positioning of the microphones arises.

5. Conclusion and Outlook

Results of the inverse scheme in 3D were presented,
which o�ers promising source identi�cation. Our �rst
numerical results in 3D demonstrates the potential
of the approach and the applicability to the low fre-
quency range, where the classical beamforming algo-
rithms are limited. A big advantage in a simulation
based identi�cation is, that it allows to appropriately
treat boundary conditions in realistic experimental se-
tups. In a next step, we will perform measurements for
real world situation and will apply the developed in-
verse scheme. Hereby, the determination of the bound-
ary conditions may be the most challenging fact. Fur-
ther, investigations in the optimal positioning of the
microphones will also be done to improve the results
of the source identi�cation.
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