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Summary

This paper addresses the issue of far-field sound source localization using hemispherical microphone

array (HMA). Rather than conventional spherical harmonics (SH), hemispherical harmonics (HSH)

basis functions are utilized herein. The hemispherical harmonics basis functions provide more accurate

representation of hemispherical functions when compared to spherical harmonics. Source localization

using spherical microphone array makes use of spherical harmonics. Previous work presented sound

capture and beamforming using HMA that is based on acoustic image principal in spherical harmonics

domain. However, hemispherical harmonics has hitherto not been investigated for source localization.

Optimal array processing methods such as MUltiple SIgnal Classification (MUSIC) and minimum

variance distortionless response (MVDR) are reformulated in HSH domain. Hemispherical harmonics

MUSIC (HSH-MUSIC) and hemispherical harmonics MVDR (HSH-MVDR) methods are presented

for source localization. The relative performance is presented using various experiments on source

localization.

PACS no. 43.60.Jn

1. Introduction

Acoustic source localization in spherical harmonics
(SH) domain has been an active area of research [1]-
[5]. A spherical microphone array (SMA) is utlized
to acquire the signal. The increasing use of SMA for
source localization and beamforming is because of the
ease of array processing in SH domain with no spatial
ambiguity [6]. The SH domain processing addition-
aly offers dimensionality reduction for computational
efficiency [7]. Various far-field and near-field source
localization algorithms have been proposed in SH do-
main. Multiple SIgnal Classification (MUSIC) [8] is
formulated in SH domain called SH-MUSIC in [9]
. Spherical harmonics minimum variance distortion-
less response (SH-MVDR) is implemented in [7]. Esti-
mation of signal parameters via rotational invariance
techniques [10] algorithm is extended for spherical ar-
ray in [11, 12]. An additional search free algorithm,
SH-root-MUSIC for source localization using SMA is
proposed in [13]. SH data model for near field source
is developed in [3].

Building of spherical microphone array over a rigid
sphere is a challenging task. Additionally, utilization
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of entire sphere comes at the expence of more number
of microphones and signals to process. It is also un-
economic when the sources are present in restricted
region of environment. A hemispherical microphone
array (HMA) is utilized in [14] for sound acquisition
and beamforming with sources placed on one side of
a rigid plane. As the data is present only on half of
the sphere, acoustic image principle is utilized herein
to represent pressure using spherical harmonics. The
proposed configuration and the principle is applicable
only when a rigid plane is attached to the bottom of
hemispherical array resulting in limited applications.
This also add to complexity as it utilizes imaginary
microphones and sources. It also requires to maintain
uniformity and symmetry across the boundary of real
and imaginary hemisphere. Spherical harmonics basis
functions have been utilized in [15, 16, 17] to represent
hemispherical functions that include bi-directional re-
flectance distribution function( BRDF) and incident
radiance functions. However, spherical harmonics in
general, are utilized to represent function defined over
entire sphere. Accurate representation of data over
hemisphere by SH requires more number of SH co-
efficients due to discontinuties at the boundary of
the hemisphere [18]. A novel hemispherical harmon-
ics (HSH) basis functions are proposed in [18] for
representation of BRDF and hemispherical radiance
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Figure 1: The processing framework for source localization using real hemispherical harmonics transform. The
sound field is sampled using I microphones with ith microphone placed at (r,Φi).

function. In this paper, the source localization is per-
formed using hemispherical microphone array. Hence,
the data is available only over hemisphere. For accu-
rate representation of sound pressure over hemisphere,
HSH basis functions are utilized. The real spherical
harmonics basis functions are introduced first followed
by the real HSH basis functions. A data model is de-
rived in HSH domain. Far-field source localization is
subsequently performed using HSH-MUSIC and HSH-
MVDR.

2. The HSH Domain Data Model

We consider a HMA with I identical and omnidirec-
tional microphones, placed on a hemisphere of radius
r. The hemisphere could be wall mounted or table
mounted. The HMA can also be formed by placing
the microphones only over the upper half of the rigid
spherical surface to save cost and computation. The
angular position of the ith microphone is denoted by
Φi = (θi, φi), where θi is elevation angle, measured
downward from positive z axis, and φi is the az-
imuth angle measured anticlockwise from positive x
axis for the ith microphone. A sound field of L plane
waves is incident on the array with wavenumber k.
The direction of arrival of the lth source is denoted by
Ψl = (θl, φl).

2.1. The Real SH Transform

The complete block diagram for hemispherical har-
monics domain processing for source localization is
illustrated in Figure 1. The localization is performed
using discrete time domain acoustic signals p(t),
where t is the snapshot index. As p(t) is real, real
spherical harmonics transform (SHT) is applied.
The associated processing has lower computational
complexity when compared to complex SHT [21,
p. 28]. The real SHT of a discrete time domain signal
is given as [21]

pnm(t) =

∫

ΦǫS2

p(t,Φ)[Rm
n (Φ)]dΦ, (1)

where Rm
n (Φ) is real valued spherical harmonics of

order n and degree m given by

R
m

n (θ, φ) =











(−1)|m|
√

2Km

n sin(|m|φ)P
|m|
n (cos θ) : m < 0

(−1)|m|
√

2Km

n cos(mφ)Pm

n (cos θ) : m > 0

K0

nP
0

n(cos θ) : m = 0

(2)

The order n takes value from [0,∞) while m varies
from [−n, n], |.| denotes the absolute value of (.), Km

n

is the normalization value given by

Km
n =

√

(2n+ 1)(n− | m |)!
4π(n+ | m |)! . (3)

Pm
n (cos θ) is the associated Legendre polynomials

(ALPs) given by the relation

Pm
n (x) =











(−1)m(1− x2)m/2 dm

dxm
Pn(x) : m ≥ 0

(−1)m
(n−m)!

(n+m)!
P

|m|

n (x) : m < 0

(4)

where cos θ is replaced by x for simplicity. Pn(x) is
unassociated Legendre polynomials expressed as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (5)

The associated Legendre polynomials for different or-
der n and same degree m are orthogonal over [-1,1]
with weighting function as 1 [18]. The orthogonality
relation is given by

∫ 1

−1

Pm
n (x)Pm

n
′ (x)dx =

2 (n+m)!

(2n+ 1) (n−m)!
δnn′ .(6)

The inverse real SHT is given by

p(t,Φ) =

∞
∑

n=0

n
∑

m=−n

pnm(t)Rm
n (Φ). (7)
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Figure 2: The plot of hemispherical harmonics Hm
n (θ, φ), for n = 1,m = −n to + n. Red denotes the positive

regions and green is for negative regions.

2.2. The HSH Basis Function

The orthogonality of Pm
n (x) is over [-1,1] as indicated

in (6). The range [-1,1] is due to the fact that the
elevation angle θ, in Pm

n (cos θ) takes value in [0, π].
As the paper deals with HMA, the elevation of the
sensor must lie in [0,π/2] or equivalently, x ∈ [0, 1].
Hence, a new set of orthogonal associated Legndre
polynomials is required. This is achieved by shifting
the associated legendre polynomials. In general, if the
polynomials Pnm(x) are orthogonal over [a, b], with
w(x) as a weighting function, then the polynomials
Pnm(q1x + q2) where q1 6= 0 are orthogonal over an
interval [a−q2

q1
, b−q2

q1
] with w(q1x + q2) as a weighting

function [23]. The linear transformation of x to 2x−1
in (6) gives the shifted ALPs expressed as

P̃m
n (x) = Pm

n (2x− 1). (8)

The shifted ALPs are orthogonal over [0, 1] with
weight function as 1. The orthogonal relation is now
expressed as
∫ 1

0

P̃m
n (x)P̃m

n
′ (x)dx =

∫ 1

0

Pm
n (2x− 1)Pm

n
′ (2x− 1)dx

=
(n+m)!

(2n+ 1)(n−m)!
δnn′ . (9)

Just as ALPs are used to construct SH basis func-
tions, shifted ALPs are utilized herein to construct
a HSH basis functions. The real valued hemispheri-
cal harmonics basis functions Hm

n (θ, φ) can now be
expressed as

H
m

n (θ, φ) =











(−1)|m|
√

2K̃m

n sin(|m|φ)P̃
|m|
n (cos θ) : m < 0

(−1)|m|
√

2K̃m

n cos(mφ)P̃m

n (cos θ) : m > 0

K̃0

nP̃
0

n(cos θ) : m = 0

(10)

where K̃m
n is the normalization value expressed as

K̃m
n =

√

(2n+ 1)(n− | m |)!
2π(n+ | m |)! . (11)

The normalization value maintains the orthogonality
of HSH functions, Hm

n (θ, φ) over [0, π/2] × [0, 2π].
3-D plots for HSH functions are given in Figure 2 for
n = 1 and m varying in [-1,1].

3. The Hemispherical Array Data

Model

The sound pressure at I microphones, p(t) =
[p1(t), p2(t), ..., pI(t)]

T in spatio-temporal domain can
be written as [10]

p(t) = A(k)s(t) + n(t), (12)

where t = 1, 2, ..., Ns, with Ns being the total snap-
shots, s is L×Ns signal matrix and n is I×Ns matrix
of uncorrelated sensor noise. A(k) is I × L steering
matrix given by

A(k) =
[

a1(k1) a2(k2) . . . aL(kL)
]

. (13)

A particular steering vector can be expressed as

al(kl) =
[

e−jkT

l
r1 , e−jkT

l
r2 , . . . , e−jkT

l
rI

]T

, (14)

where kl is the wave-vector corresponding to the lth
plane wave, given by

kl = −
[

k sin θl cosφl, k sin θl sinφl, k cos θl
]T

, (15)

ri is the position vector of ith microphone expressed
as

ri =
[

r sin θi cosφi, r sin θi sinφi, r cos θi
]T

, (16)

j =
√
−1 and [ . ]Tdenotes the transpose operator.

The ith term in (14) refers to pressure at location ri
due to lth unit amplitude plane wave. This can alter-
natively be written in spherical coordinate for HMA
as

e−jkT

l
ri =

N
∑

n=0

n
∑

m=−n

bn(kr)H
m
n (θl, φl)H

m
n (θi, φi),

(17)
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Figure 3: Source localization using HSH-MUSIC. Two
sources are at (20◦, 100◦) and (50◦, 110◦) with SNR 15
dB.

where the finite order N is chosen based on kr < N ≤√
I − 1 [5]. bn(kr) is far-field mode strength given by

bn(kr) =







4πjn(jn(kr) −
j
′

n(kr)

h′

n(kr)
) : rigid hemisphere

4πjnjn(kr) : open hemisphere
(18)

Here, jn(kr) is the spherical bessel function of first
kind. hn(kr) is spherical Hankel function of second
kind and ′ refers to first derivative. Utilizing (14) and
(17) in (13), the steering matrix can be expressed as

A(k) = H(Φ)B(kr)HT (Ψ), (19)

where H(Φ) is a I × (N + 1)2 matrix, whose ith row
is defined as

h(Φi) =
[

H0
0 (Φi), H

−1
1 (Φi), H

0
1 (Φi), . . . , H

N
N (Φi)

]

.

(20)

H(Ψ) is a L × (N + 1)2 matrix whose element can
be defined by replacing Φi with Ψl in (20). B(kr) is
(N + 1)2 × (N + 1)2 matrix given as

B(kr) = diag
{

b0(kr), b1(kr), b1(kr), b1(kr), . . . , bn(kr)
}

.

(21)

The hemispherical harmonics decomposition of pres-
sure p(t), received at HMA is given by

pnm(t, r) =

∫ π/2

0

∫ 2π

0

p(t, r, θ, φ)[Hm
n (θ, φ)] sin(θ)dθdφ

∼=
I

∑

i=1

aipi(t, r,Φi)[H
m
n (Φi)], (22)

where ai is sampling weight of ith microphone [22].
For all n ∈ [0, N ] and m ∈ [−n, n], (22) can be re-
written in a matrix form as

pnm(t, r) = HT(Φ)Γp(t, r,Φ), (23)
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Figure 4: Source localization using HSH-MVDR. Two
sources are at (20◦, 100◦) and (50◦, 110◦) with SNR
15 dB.

where pnm(t, r) =
[

p00, p1−1 p10 p11 . . . pNN

]T
and

Γ = diag
{

a1, a2, a3, . . . aI
}

. The orthogonality of
hemispherical harmonics suggests

HT(Φ)ΓH(Φ) ≈ I, (24)

where I is an identity matrix of dimension (N +1)2×
(N + 1)2. Substituting (19) in (12), multiplying both
side by HT(Φ)Γ, utilizing (23),(24) the final data
model becomes

pnm(t, r) = B(kr)HT(Ψ)s(t) + nnm(t), (25)

where nnm(t) = HT(Φ)Γn(t). As the mode strength
is constant for a particular array configuration, the fi-
nal hemispherical harmonics data model can be writ-
ten as

dnm(t, r) = HT(Ψ)s(t) + znm(t), (26)

where znm(t) = B−1(kr)nnm(t) and dnm(t, r) =
B−1(kr)pnm(t, r).

4. Acoustic Source Localization using

HMA

Having formulated the data model in hemispherical
harmonics domain, algorithms for source localization
is presented in this Section. In particular, MUSIC and
MVDR algorithms are reformulated. Comparing the
data model in (12) and (26), the steering matrix in
HSH domain is given by HT(Ψ).

4.1. The Hemispherical Harmonics MUSIC

The MUSIC spectrum in hemispherical harmonics do-
main (HSH-MUSIC) can now be written as

PHSH-MUSIC(Ψ) =
1

hT (Ψ)QnmQnm
Th(Ψ)

, (27)
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Figure 5: Cumulative RMSE for two sources at
(30◦, 100◦) and (35◦, 110◦) with various SNRs.

where h(Ψ) is steering vector defined in (20), Qnm

is noise subspace obtained by eigenvalue decompo-
sition of array covariance matrix, Rdnm

given by
Rdnm

= E[dnm(t, r)dnm(t, r)T ]. The HSH-MUSIC
spectrum gives peak at the location of the sources.
This is because, the denominator of the HSH-MUSIC
spectrum turns out to be zero when Ψ is the direction
of arrival (DOA) owing to the orthogonality between
noise eigenvector and steering vector.

4.2. The Hemispherical Harmonics MVDR

MVDR is beamforming based source localization
method. The MVDR spectrum in hemispherical har-
monics domain (HSH-MVDR) can be formulated as

PHSH-MVDR(Ψ) =
1

hT (Ψ)Rdnm

−1h(Ψ)
. (28)

The MVDR power spectrum gives L peaks corre-
sponding to L sources.

Source localization using HSH-MUSIC and HSH-
MVDR is illustrated in Figure 3 and Figure 4 re-
spectively. The simulation is performed considering
all the microphones in Eigenmike® system with ele-
vation varying from 0◦ to 90◦. Two sources are taken
at (20◦, 100◦) and (50◦, 110◦) with 15 dB signal to
noise ratio (SNR).

5. Simulation Experiments

Two methods HSH-MUSIC and HSH-MVDR for
source localization are proposed herein. A rigid hemi-
sphere of radius 4.2 cm is taken. It consists of all the
20 microphones in Eigenmike® [24] system having el-
evation from 0◦ to 90◦. The order of the array is taken
to be N = 3. Root mean square error (RMSE) and
probability of resolution measures are used to evaluate
performance of the proposed methods. Two sources
located at (30◦, 100◦) and (35◦, 110◦) are considered.
The noise assumed is additive in nature with zero
mean Gaussian distribution and unit variance.
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Figure 6: Probability of resolution for two sources at
(30◦, 100◦) and (35◦, 110◦) with various SNRs.

5.1. The Cumulative RMSE analysis

The source localization performance is presented
herein as cumulative RMSE (CRMSE) formulated as

CRMSEθ,φ =
1

4T

T
∑

t=1

2
∑

l=1

[

θl − θ̃l(t)

]2

+
[

φl − φ̃l(t)

]2

,

(29)

where t is the trial index, l is the source index, (θl, φl)
is the true position of the source and (θ̃l, φ̃l) is the es-
timated source position. The CRMSE is plotted here
for 100 independent Monte Carlo trials. Figure 5
shows the CRMSE plot for the proposed HSH-MUSIC
and HSH-MVDR methods at various SNRs. It is to
note that the subspace based HSH-MUSIC method
has lower CRMSE.

5.2. Probability of Resolution Analysis

Statistical analysis for the proposed methods is pre-
sented here using probability of resolution at various
SNRs. A confidence interval of ζ = 5◦ is used for
computing probability over 50 independent trials. The
probability of resolution is given by

Pd =
1

2T

T
∑

t=1

2
∑

l=1

Pr

((∣

∣

∣
θl − θ̃l(t)

∣

∣

∣
≤ ζ

)

⋂

(
∣

∣

∣
φl − φ̃l(t)

∣

∣

∣
≤ ζ

))

,

=
1

2T

T
∑

t=1

2
∑

l=1

[

sgn
(

ζ −
∣

∣

∣
θl − θ̃l(t)

∣

∣

∣

)]

×
[

sgn
(

ζ −
∣

∣

∣
φl − φ̃l(t)

∣

∣

∣

)]

, (30)

where Pr is the probability of an event and sgn(x) is
given by

sgn(x) =

{

1 if x ≥ 0,
0 if x < 0.

The Pd values for HSH-MUSIC and HSH-MVDR are
plotted in Figure 6 for various SNRs. It is clear
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that probability of resolution increases with increasing
SNR. Additionally, the subspace based HSH-MUSIC
has higher resolving power.

6. Conclusions and Future Work

Far-field source localization using hemispherical mi-
crophone array is addressed for the first time in this
paper. Hemispherical harmonics basis functions are
utilized to formulate MUSIC and MVDR algorithms
for source localization. The proposed methods are
evaluated using various experiments on source local-
ization. CRMSE and probability of resolution mea-
sures are utilized for this. A fast, time domain beam-
forming algorithm will be worked out in future for
capturing and reproducing 3D audio using HMA.
Building an own prototype HMA for sound source lo-
calization and sound field analysis is also in the future
agenda.
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