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Summary
This paper introduces and investigates a novel single-layer Fourier-based near-field acoustic hologra-
phy (NAH) technique suited to measurements with a linear microphone array in the presence of a
reflector that is perpendicular to the array. The general idea is to model the reflected plane waves as
weighted versions of the incident waves. Numerical experiments are performed in order to test the
reconstructions against the conventional (free-field) NAH technique and reference results obtained
from theoretical calculations. The most important outcome of this paper is that the reconstruction
errors decrease as the wavelength of the plane waves is an integer multiple of the array length, and
this is attributed to spectral leakage and windowing artefacts introduced by the use of the spatial
Fourier transform. In the case of greatest leakage, that is, the wavenumbers of the plane waves are
exactly in the middle of two adjacent bins of the wavenumber domain, the errors can exceed 100%. In
the case of no leakage, the errors are no greater than 25%. Overall, this study points towards further
investigation of the method.

PACS no. 43.20.Gp, 43.60.Ac, 43.60.Fg, 43.60.Sx

1. Introduction

Fourier-based near-field acoustic holography was first
introduced in the ’80s [1], and it comprises an efficient
technique to reconstruct the pressure or the velocity
field of a given source, by means of microphone ar-
ray measurements in the near-field of such a source.
One of the typical limitations of the original NAH
formulation is the lack of a model of the acoustic en-
vironment in which the measurements are performed.
In other words, the presence of reflecting surfaces, or
of additional sources other than the target source, can
more often than not impact the reconstruction accu-
racy significantly.

A number of studies have attempted to filter out
the reflections, and the majority rely on array mea-
surements in two planes (or layers). Examples of
these are applications of the statistically optimized
NAH [2, 3, 4, 5, 6, 7], the equivalent source method
[8, 9, 10, 11, 12], and the Fourier-based methods
[13, 14, 15, 16]. As opposed to double-layer formu-
lations, Zea and Arteaga have proposed a single-layer
extension of Fourier-based NAH to account for the
presence of a reflecting surface that is parallel to the
microphone array [17].
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Yet another limitation of Fourier-based NAH is
that the reconstruction and measurement planes must
be parallel, which guarantees that the spatial con-
volutions performed in the Kirchhoff-Helmholtz (or
Rayleigh) integrals can be solved in the wavenumber
domain by means of spatial Fourier transforms [18].
This is in fact another reason why the method in [17]
can be formulated in the wavenumber domain. In this
paper, however, we consider the presence of a reflec-
tor that is perpendicular to the array, thus the con-
volution operators describing the propagation paths
from the array to the reflector are no longer space-
invariant. Although there is room for application of
boundary element methods, such as an inverse WRW
model [19, 18], there are no approaches, to the au-
thor’s knowledge, of single-layer Fourier-based NAH
methods that can tackle this particular problem.

This paper introduces and examines a new single-
layer Fourier-based NAH formulation, which can be
used to remove the sound field due to a reflector that
is perpendicular to a linear microphone array. The
general idea is to represent the reflected plane waves
as weighted incident waves on the reflector. Numerical
experiments with synthetic plane waves are performed
in order to test the accuracy of the method against
that of free-field NAH [20]. The results reveal that the
method is most accurate whenever the wavelength of
the plane waves is an integer multiple of the array
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length, and this is attributed to the leakage due to
the use of spatial Fourier transforms.

2. Background

This section includes the pertinent theoretical back-
ground to put the present work into context. The sec-
tion begins with a description of the WRW model and
the definition of space-variance of acoustic wave prop-
agation. Thereafter, we include a section with the con-
cept of spatial Fourier transform and the interpreta-
tion of sound fields in terms of plane waves. Lastly, the
concept of plane-wave specular reflections from locally
reacting surfaces is briefly discussed. Throughout the
remainder of the text the time-harmonic dependence
of the fields ejωt is omitted. In addition, vectors and
matrices are represented with bold-faced lower-case
and upper-case letters respectively.

2.1. WRW model

The acoustic problem is illustrated in Figure 1. The
pressure field in the source line propagates to the ar-
ray in the form of direct field, and adds with the re-
flected field that comes from the reflector. The re-
flector is located at a distance δ from the right-most
microphone position, and the spacing between the mi-
crophones is ∆x. The array and the source lines are
located at z = zh and zs respectively. Then, the total

Reflector

δ

Array

z

x

∆x

Source

z = zh

z = zs

Figure 1. Geometrical illustration of the acoustic problem.

sound field at the array via the WRW model reads
[19]

ph = (Wsh + WrhRWsr) ps, (1)

where pi is a column vector with the pressure field
at the line z = zi, and the matrix R contains the
reflectivity impulse responses of the reflector [19, 21].
In addition, any matrix Wnm contains in its columns
the relevant Dirichlet Green’s functions that represent
the acoustic propagation between the line sets n and

m [19]. In mathematical terms, a column of Wnm is
defined as

wnm = −jk∆x
zm − zn

2rnm
H

(2)
1 (krnm), (2)

where rnm =
√

(xm − xn)2 + (zm − zn)2, j2 = −1, k
is the acoustic wavenumber and H(2)

1 is the first-order
Hankel function of the second kind [22].

It can be shown that Wnm exhibits Toeplitz struc-
ture whenever the line sets n and m are parallel to
each other [18], because the convolution operators
are space-invariant and the convolution theorem holds
[23]. In that case, the convolution can be solved in the
wavenumber domain by means of using the operator

Gnm = diag
{
ejkz(zm−zn)

}
, (3)

where kz is defined as

kz =

{√
k2 − k2

x, kx � k,
j
√

k2
x − k2, kx � k,

(4)

and kx is the vector containing the wavenumbers (or
spatial frequencies) sampled by the array. It should
be noted that a real-valued kz corresponds to a prop-
agating wave, whereas an imaginary-valued kz to an
evanescent wave [20].

However, as it is the case in Figure 1, the line sets s
and r, as well as r and h, are perpendicular, which in-
troduces space-variance in the convolution operators
and Eq. (3) can no longer be used.

2.2. Spatial Fourier transforms

The use of spatial Fourier transforms in acoustics
brings a powerful tool to the analysis of sound fields in
terms of plane waves and their incidence angles [20].
For example, a plane wave that propagates with an
angle θ with respect to the z axis is defined as:

p(x, z) = e−j(kx sin θ+kz cos θ). (5)

If z is constant, we can apply the spatial Fourier trans-
form along the x axis as

p̃(kx) =

∫ ∞
−∞

p(x)e−jkxxdx =

= e−jkz cos θδ(kx − k sin θ), (6)

where kx is the spatial frequency of the field in the x
direction. In other words, the plane wave can be rep-
resented in the wavenumber domain as a Dirac delta
centered at the wavenumber kx = k sin θ.

In practice, the measured pressure field is finite and
discrete, thus the application of spatial Fourier trans-
forms can lead to wavenumber leakage and other dis-
tortions due to spatial windowing [20]. For instance,
if a rectangular window is used, then the wavenumber
spectrum is

p̃(kx) = e−jkz cos θsinc
[
(kx − k sin θ)

L

2

]
, (7)

where sinc(x) = sin(x)/x, and L is the array length
[20].
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2.3. Plane-wave reflections

The theory of specular reflections from locally react-
ing surfaces comprises an initial approximation to the
problem of plane-wave reflection. A locally-reacting
surface is that in which the pressure (and particle ve-
locity) at a given point in the surface depends only
on the pressure (particle velocity) at that point [22].
In order to illustrate this, let us consider the ge-
ometry in Figure 1, with the reflector positioned at
x = 0. Further assume that the reflector is consider-
ably larger than the acoustic wavelength. Then, for
some Ainc ∈ C, the incident and reflected plane waves
read

pinc(x, z) = Aince
−j(kx sin θ+kz cos θ), (8a)

pref(x, z) = CAince
−j(−kx sin θ+kz cos θ). (8b)

Then, at the line x = 0, the following relationship
holds [22]

p(0, z) = pinc(0, z) +pref(0, z) = (1 +C)pinc(0, z).
(9)

Next, we can determine the particle velocity via
application of Euler’s equation of motion to Eqs. (8a)-
(8b) as follows

uinc(x, z) = −j 1

Z0k

∂

∂x
pinc(x, z) = − sin θ

Z0
pinc(x, z),

(10a)

uref(x, z) = −j 1

Z0k

∂

∂x
pref(x, z) =

sin θ

Z0
pref(x, z),

(10b)

where Z0 is the specific impedance of air. Thus, the
total particle velocity at the line x = 0 follows

u(0, z) = uinc(0, z) + uref(0, z) =

= −(1− C)pinc(0, z). (11)

Lastly, the surface impedance can be found via

Z = − p(0, z)
u(0, z)

=
Z0

sin θ

1 + C

1− C
. (12)

Then, the plane-wave reflection coefficient reads in the
discrete wavenumber domain

C = diag
{

kx − kβ
kx + kβ

}
, (13)

where β is the specific acoustic admittance of the re-
flector.

3. Separation method

Let us assume that an array of pressure receivers is
located as shown in Figure 1. The following equations
are all written in the wavenumber domain, and this

shall be denoted with a tilde above the pressure fields.
The total sound field measured at the array (holo-
gram) line equals the sum of the direct field and the
reflected field

p̃h = p̃df + p̃rf, (14)

with the reflected field modelled as a function of the
direct field as follows

p̃rf = MΨp̃df. (15)

Here the permutation matrix

M =

(
0 0
J 0

)
, (16)

where J is an anti-diagonal identity matrix of ap-
propriate dimensions, and the reflection filter Ψ =
diag{ψ} has its diagonal elements defined as

ψ =

{
kx−kβ
kx+kβ

e−jkx(L+2δ), kx � k
0, kx � k,

(17)

where the notation � and � denote point-wise vector
inequalities.

If the reflector is located on the left-hand side of
the array, then p̃rf = (MΨ)

H
p̃df, where H denotes

the Hermitian matrix transpose. Note that Ψ discrim-
inates evanescent waves, assuming they do not inter-
act with the reflector. Propagation towards the source
line z = zs entails the following modifications to the
system of equations

p̃h = GRp̃s, (18)

where

GR =
[
Q + G2

hsMΨ
]
Gsh. (19)

Here Q = diag{q} has its elements defined as

q =

{
e−2jkz(zh−zs), kx ≺ 0

1, kx � 0.
(20)

If the reflector is on the left-hand side of the array,
then Q must be premultiplied with G2

sh.
The problem in Eq. (18) is ill-posed and sensitive to

noise in the measurements p̃h, thus a regularization
strategy must be adopted. In this paper we employ
a general Tikhonov filter approach via the singular
value decomposition [24], which consists of minimizing
the functional

F(p̃s) = ‖p̃h −GRp̃s‖22 + µ2‖ΓVH p̃s‖22, (21)

where Γ is the Tikhonov matrix, µ > 0 is the regular-
ization parameter, and the singular value decomposi-
tion of GR reads

GR = UΣVH , (22)
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where Σ is a diagonal matrix whose elements are the
singular values, here denoted with σ. This allows us
then to find the global minimum of Eq. (21) with the
Tikhonov filter F via [24]

p̃(rec)
s = VFΣ−1UH p̃h, (23)

where

F =
[
ΣHΣ + µ2ΓHΓ

]−1
ΣHΣ, (24)

and

Γ = µ2
[
ΣHΣ + µ2

]−1
. (25)

Adequate choice of µ can be done, for example, with
the generalized cross-validation [25], the L-curve [26]
or the Morozov’s discrepancy principle [27]. In this
paper we use the L-curve.

4. Numerical investigation

4.1. Setup

The simulation setup is illustrated in Figure 1. The
distance between the array and source lines is zh −
zs = 6 cm, and the distance from the array to the
reflector is δ = 9 cm. The reflector is deemed rigid,
that is, β = 0. The frequency range of interest is from
500 Hz to 2500 Hz in steps of 100 Hz. The sound fields
are composed of 20 plane waves propagating in the +x
direction, and 10 plane waves propagating in the −x
direction, all with random complex amplitudes. The
angles of incidence are chosen such that the wavenum-
bers of the plane waves are exactly sampled by the
array. Eqs. (8a)-(8b) are then used to synthesize the
relevant sound fields at the array and source lines. An
array of 50 microphones spaced by 5 cm is used. Com-
plex Gaussian noise is added to the measurement line
ph such that the signal-to-noise ratio is 25 dB. Free-
field NAH solutions are regularized with the modified
Tikhonov filter described in [28].

4.2. Evaluation metrics

In order to quantify the performance of the recon-
struction, the following error metric is used

ε =
‖p(ref)

s − p
(rec)
s ‖2

‖p(ref)
s ‖2

· 100%, (26)

where ‖·‖2 is the `2 norm, superscripts (ref) and (rec)
denote reference and reconstructed solutions. In ad-
dition, a reflected-to-direct ratio (RDR) is estimated
at the measurement line z = zh via

RDR =
‖prf‖2
‖pdf‖2

· 100%. (27)

In essence, this quantity indicates what percentage of
the measured sound field corresponds to reflections,
with respect to the direct field, as well as how accu-
rate will the reconstruction be via the free-field NAH
method.

4.3. Reconstruction results

The reconstruction errors of the separation method
and the free-field NAH method are shown in Figure
2, together with the RDR. The errors via free-field
NAH indicate that the reconstructions are largely dis-
turbed by the reflections, and this can be explained
with such high RDR percentages. On the contrary, the
reconstruction errors via the proposed method appear
to be no greater than 30%.
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Figure 2. Reconstruction errors via the separation method
and the free-field NAH method, as well as the reflected-
to-direct ratio (RDR).

An illustration of the reconstruction procedure is
shown in Figure 3, where the left-hand side shows
wavenumber spectra and the right-hand side shows
space-domain pressure. As it can be seen in Figure
(3a), the reconstruction via free-field NAH seems to
accurately recover the negative axis of the wavenum-
ber spectrum, but it fails to recover the positive axis
which is distorted by the reflected plane waves. On
the other hand, the reconstruction via the separa-
tion method appears to be accurate within the whole
wavenumber domain, and this can also be confirmed
in Figure (3b).

4.4. Influence of spectral leakage

In this section we examine how the reconstruction er-
rors vary with plane waves whose wavenumbers are
not exactly sampled by the array. To do so, we de-
fine a quantity ζ that represents the percentage away
from an exact bin in the wavenumber domain. In
principle, the influence of this quantity is greatest at
ζ = 50%, and is smallest as the wavenumber of the
plane waves gets closer to a wavenumber bin. For the
sake of brevity we include results at 1500 Hz, vary-
ing ζ from 0% to 100% in steps of 5%. Furthermore,
in an attempt to account for the leakage, we include
reconstruction errors using a reflection filter Ψ with
modified phase (kx + ζ2π/L)(L+ 2δ) for kx � k.

Figure 4 shows the reconstruction errors versus ζ for
the free-field NAH method, the separation method,
and the separation method with modified filter phase.
The errors obtained with free-field NAH are nearly
invariant with respect to ζ, whereas those obtained
with the separation method, as expected, increase as
ζ tends to 50% and decrease as ζ tends to 0% or 100%.
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Figure 3. Sound pressure level (SPL) plots in dB re 20 µPa at 1500 Hz in (a) the wavenumber domain, and (b) the
spatial domain. The notation used is: reference solution p

(ref)
s , reconstruction via the separation method p

(rec,sm)
s , via

the free-field NAH method p
(rec,ff)
s , as well as the measurement line ph. The reconstruction error at this frequency is

15.59% for the separation method, and 158.2% for free-field NAH.

As regards the separation method with modified fil-
ter phase, there appears to be a substantial decrease
in reconstruction error. Although in practice there is
no knowledge of ζ, it is interesting to see that the re-
constructions can still be accurate if this parameter is
taken into account in the model.
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Figure 4. Reconstruction errors versus ζ at 1500 Hz for
the free-field NAH method, the separation method, and
the separation method with modified filter phase.

5. Concluding remarks

This paper introduces a new Fourier-based near-field
acoustic holography (NAH) method that accounts
for the presence of a reflector that is perpendicular
to a linear microphone array. The main novelty is
that the formulation of the method is derived in the
wavenumber domain, in spite of the difficulties related
to the space-variant nature of the propagating func-
tions. The regularized inversion is done by means of
Tikhonov filtering via the singular value decomposi-
tion. Numerical experiments are included in order to

investigate the performance of the method against the
conventional (free-field) NAH method.

In general the performance of free-field NAH is
strongly disturbed by the reflections and yields in-
accurate reconstructions. On the other hand, the sep-
aration method is most accurate when the synthetic
sound fields are composed of plane waves which are ex-
actly sampled by the array –i.e. minimum leakage. As
an initial investigation, the influence of spectral leak-
age in the reconstructions has been examined, and
it has been shown that the separation method can
still provide accurate results if the leakage is included
in the model. It should however be stressed that in
general it is likely that some plane waves have more
leakage than others, thus the results shown here do
not necessarily apply to practical situations.

6. Future work

There are three directions for future work that can be
followed from this paper. The first is to seek for a gen-
eralized model of spectral leakage, such that the sepa-
ration method is independent of ζ. Another study can
be done to extend the formulation to two-dimensional
planar arrays, which should in principle be straight-
forward. Lastly, the performance of the method in the
presence of partially absorbing reflectors can be inves-
tigated by means of accounting for the corresponding
admittance in the reflection filter Ψ.
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