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Summary
Many algorithms for localizing, tracking or Direction of Arrival (DOA) estimation of speech sources,
rely on the so-called W-disjoint orthogonality, i.e., only one speaker is assumed to be active at a
certain time-frequency bin. Based on this assumption, bin-wise DOA estimates can be computed
from pairwise phase differences of each time-frequency bin and clustered afterwards. Averaging the
estimates of each cluster, i.e., computing the cluster centroids, increases the robustness of the local-
ization estimate. However, clustering can be computationally demanding due to the large amount of
DOA estimates, and at the same time highly sensitive to errors as potentially many of them may
not be reliable due to noise and reverberation. Therefore, an efficient selection algorithm for reliable
Short-Time Fourier Transform (STFT) bins is desirable that aims at increasing the accuracy of the
estimate while simultaneously reducing the computational complexity. In this contribution, we in-
vestigate different selection methods for STFT bins as suitable for localization algorithms for speech
sources, which are based on the W-disjoint orthogonality, and exploit bin-wise speech signal power,
Coherent-to-Diffuse Power Ratio (CDR), and Speech Presence Probability (SPP). The effectiveness
of the selection processes is studied for different localization algorithms.

PACS no. 43.60.+d

1. Introduction

Localization and DOA estimation of one or multiple
speakers in an acoustic environment is an important
preprocessing step for many signal processing algo-
rithms, e.g., steering a beam to the direction of a
desired source [1] or pointing the camera in a video
conferencing scenario to the active speaker [2].

Especially DOA estimation has attracted much in-
terest in the last decades and many approaches have
been developed to address this problem, e.g., Gener-
alized Cross Correlation and Steered Response Power
[3], Blind Source Separation (BSS)-based DOA esti-
mation [4] or narrowband DOA estimation in combi-
nation with BSS [5, 6].

Many state-of-the-art approaches rely on W-
disjoint orthogonality [7] of speech sources in the
STFT domain, i.e., it is assumed that only one source
is active at each STFT bin. Therefore, a narrowband
DOA estimate computed from an STFT bin corre-
sponds to a single source under the assumption of W-
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disjoint orthogonality. These narrowband estimates
can be combined afterwards to obtain an overall local-
ization result or DOA estimate. For DOA estimation,
[8] used the k-means algorithm to cluster the observed
narrowband estimates to obtain a global DOA esti-
mate. The phase differences of the STFT bins between
the observed microphone signals are used for DOA es-
timation in [9]. The same feature was used for localiza-
tion in an Acoustic Sensor Network (ASN) in [10] and
a distributed localization algorithm in [11]. Data fu-
sion of the observed narrowband DOA estimates has
been done by triangulation and subsequent cluster-
ing in the Cartesian space in [12] for localization and
similarly for tracking in [13] for the estimation of the
position of multiple speakers in an enclosure.

There are a few approaches to improve the perfor-
mance of these narrowband localization algorithms,
e.g., enhancing narrowband DOA estimation by re-
placing the microphone signals by the parameters of
a complex Watson distribution [14] or using outlier re-
jection [12] to improve the localization performance.
The signal power was used for weighting bin-wise es-
timates in [6], similarly the CDR was used in [15] and
the SPP in [13]. However, a comparative study of the
efficacy of such methods is still missing.
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In this contribution, we investigate different
observation-based parameter estimates, namely bin-
wise signal power, CDR, and SPP, for STFT bin
selection as a preprocessing step for DOA estima-
tion. Thus, bins corresponding to low values for these
parameters are discarded before clustering. Most of
the narrowband DOA estimation or localization al-
gorithms are based on clustering these bin-wise es-
timates. Hence, the selection aims at improving the
localization results as well as reducing the computa-
tional complexity of the clustering. Finally, a simula-
tion study is performed to show the beneficial effects
of the selection process followed by a discussion w.r.t.
the application in a simple DOA and a localization
algorithm.

2. Signal Model

In the following, the frequency bins are indexed
by k = 0, . . . ,K − 1 and the time frames by
l = 0, . . . , L− 1. We consider a microphone array of
arbitrary shape comprising M microphones lying in a
plane and observing a static acoustic scene containing
S spatially separated speech sources. In the STFT do-
main, the m-th microphone signal in time-frequency
bin (l, k) can be described by

xm(l, k) =

S∑
s=1

hsm(k)vs(l, k) + wm(l, k), (1)

where hsm is the acoustic transfer function from
source s to microphone m, vs the source signal of in-
dex s and wm additive noise present at microphone
m. With the assumption of W-disjoint orthogonality,
this signal model can be simplified to

xm(l, k) = hsm(k)vs(l, k) + wm(l, k), (2)

i.e., only a single source s contributes to the observed
mixture in STFT bin (l, k).

3. DOA Estimation

In the following, an algorithm for DOA estimation in
2D with an array of arbitrary geometry is described
[8], which will be a fundamental building block for
the rest of the paper. To this end, a vector of unit
length pointing to the direction of the source active
at time-frequency bin (l, k) is defined by

q(l, k)

‖q(l, k)‖2
=

[
cos θs(l, k)
sin θs(l, k)

]
, (3)

where θs(l, k) denotes the azimuth of the source s ac-
tive in (l, k). With these preliminary steps, the acous-
tic transfer function in STFT bin (l, k) can be approx-
imated under the free-field assumption as

hm(l, k) = exp

[
−j 2πk

K

fs
c

dT
m

q(l, k)

‖q(l, k)‖2

]
,

with the position of microphone m at dm, the sam-
pling frequency fs and the sound velocity c. The vec-
tors pointing from the reference microphone R to the
other microphones of the array are collected in the
matrix

D =


d1 − dR
. . .

dR−1 − dR
dR+1 − dR

. . .
dM − dR

 (4)

where the pair dR − dR is discarded. The unit vec-
tor pointing to the source, active in bin (l, k), can be
expressed as [8]

q(l, k)

‖q(l, k)‖2
= D+τmR c, (5)

where (·)+ denotes the pseudoinverse. The Time Dif-
ference of Arrival (TDOA) vector of all microphones
m w.r.t. the reference microphone τmR can be com-
puted by calculation of the phase differences between
microphone signal m and reference microphone sig-
nal R in STFT bin (l, k) and normalization by the
frequencies fk corresponding to the respective time-
frequency bin

τmR(l, k) =
arg{xm(l, k)x∗R(l, k)}

2πfk
. (6)

The ratio of the second and the first element of the di-
rectional vector in (3) is the tangent of the respective
DOA

tan θs(l, k) =
sin θs(l, k)

cos θs(l, k)
=

[q(l, k)]2
[q(l, k)]1

. (7)

Therefore, the DOA, i.e., the azimuth angle w.r.t. the
microphone array reference system can be computed
by θ̂(l, k) = atan

(
[q(l,k)]2
[q(l,k)]1

)
.

4. STFT Bin-wise Parameter Esti-
mates

The following section introduces parameters for se-
lecting or discarding STFT bins for DOA estimation
or localization.

4.1. Bin-wise Signal Power

The bin-wise signal power has been used for weighting
an EM algorithm for acoustic source separation in [6].
Here, we determine the bin-wise power of microphone
m as Pm(l, k) = |xm(l, k)|2.

Euronoise 2018 - Conference Proceedings

- 2562 -



CDRmR =

ΓmR
w Re

{
Γ̂mR
x

}
−
∣∣∣Γ̂mR

x

∣∣∣2 −√(ΓmR
w )2 Re

{
Γ̂mR
x

}2
− (ΓmR

w )2
∣∣∣Γ̂mR

x

∣∣∣2 + (ΓmR
w )2 − 2 ΓmR

w Re
{

Γ̂mR
x

}
+
∣∣∣Γ̂mR

x

∣∣∣2∣∣∣Γ̂mR
x

∣∣∣2 − 1
(8)

4.2. Coherent-to-Diffuse Power Ratio

The CDR was used for dereverberation of speech sig-
nals by spectral subtraction [16]. In the context of
DOA estimation, it has been applied to weighting of
narrowband DOA estimates [15].

The auto Power Spectral Densities (PSDs)
Φ̂xmxm

(l, k), Φ̂xRxR
(l, k) and the cross PSDs

Φ̂xmxR
(l, k) can be estimated by recursive averaging

of the instantaneous signal power

Φ̂xixj
(l, k) = λΦ̂xixj

(l − 1, k)+ (9)
· · ·+ (1− λ)xi(l, k)x∗j (l, k),

where i, j ∈ {m,R}. Exploiting (9), the microphone
coherence between microphone m and the reference
microphone can be estimated by

Γ̂mRx (l, k) =
Φ̂xmxR

(l, k)√
Φ̂xmxm

(l, k)Φ̂xRxR
(l, k)

. (10)

One building block to classify CDR estimators is
their coherence models for the direct and reverberant
acoustical path. In this contribution, we model the re-
verberant sound field to be diffuse, i.e., the model for
the coherence is given by [17]

ΓmRw (fk) =
sin
(
2πfkd

mR
mic/c

)
2πfkdmRmic/c

, (11)

where dmRmic denotes the distance between microphone
m and reference microphone R and fk the frequency
corresponding to frequency band k. In this contribu-
tion, we use the DOA-independent CDR estimator
(8). Therefore, no model for the coherence of the di-
rect path and the early reflections is needed. With
regard to the definition of a discarding threshold, the
CDR is converted into the diffuseness DIFF sensed
by microphone m and reference microphone R. The
diffuseness is defined by

DIFFm(l, k) =
1

CDRmR(l, k) + 1
, (12)

which yields values between zero and one, where zero
means perfectly coherent noise and one means spa-
tially white noise. Therefore, a low diffuseness corre-
sponds to STFT bins, which contain less reverbera-
tion.

4.3. Speech Presence Probability

The SPP has been widely used in noise power estima-
tion [18]. For the following, we assume two hypothe-
ses: speech absence H0 and speech presence H1. The

posterior density of the hypothesis H1 given xm(l, k)
is defined as

P (H1|xm(l, k) =

(
1 + (1 + ξopt) . . . (13)

. . . exp

(
−|xm(l, k)|2

σ̂2
N

ξopt

1 + ξopt

))−1

,

where ξopt denotes the a priori Signal-to-Noise Ra-
tio (SNR). ξopt is set to a fixed value to guarantee
a specified performance of the SPP estimator. Here,
we choose 10 log10(ξopt) = 15dB as in [18]. The noise
power σ̂2

N is assumed to be constant and is estimated
from a time frame containing only noise [18]. The be-
ginning and duration of this frame is assumed to be
known a priori. The SPP estimate is recursively aver-
aged to increase its robustness

P(l, k) = β P (l − 1, k) + (1− β) P (H1|xm(l, k)) .

Here, we choose β = 0.9 as in [18] for our experiments.

5. STFT Bin Selection

To select beneficial STFT bins with respect to DOA
estimation or localization, we evaluate the impact
of the parameters, proposed in Section 4. Thus, the
SPP and power are computed for each microphone,
whereas CDR is evaluated for each microphone pair
consisting of reference microphone R and another mi-
crophone. Afterwards, the criteria are evaluated by
checking the following inequalities for different selec-
tion strategies. The criterion for power-based selection
is given as

Pm(l, k) > γP , (14)

the criterion for CDR-based selection as

DIFFm(l, k) < γDIFF (15)

and for SPP-based selection as

SPPm(l, k) > γSPP. (16)

Here, γP , γDIFF and γSPP denote suitably chosen
thresholds. We define a set of selected STFT bins AP ,
ADIFF and ASPP for each criterion, which contains
STFT bin (l, k), if (14), (15) or (16) are fulfilled, re-
spectively. The intersection of these sets

ACOMB = AP ∩ ADIFF ∩ ASPP. (17)

describes the set of the bins selected by a logical ’and’
combination of all criteria. Note that the selection
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Figure 1. Examplary histograms of STFT bin-wise DOA estimates without selection, with power-based selection, with
CDR-based selection, with SPP-based selection, and with the combination of all criteria. The histograms have been
normalized. The number in the brackets in the titles of the figures denote the number of bins which are left after the
selection process and the red lines denote the true source positions θs.

process and the evaluation of the criteria is compu-
tationally cheap, as can be seen by the description of
the criteria.

In the following, we replace the dependency of the
observations on the time-frequency bin (l, k) by a de-
pendency on the data index n as the dependency on
the time-frequency indices is not longer meaningful
due to the discarding process. The number of selected
STFT bin-wise estimates, i.e., the cardinality of the
sets AP , ADIFF, ASPP and ACOMB is denoted by
NP , NDIFF, NSPP and NCOMB, respectively. Exem-
plary histograms for illustration of the selection pro-
cess based on the described criteria and their combi-
nation are depicted in Fig. 1.

6. Localization of Acoustic Sources
Exploiting Sparsity of Speech Sig-
nal Mixtures

In the following subsections, we are going to describe
algorithms for DOA estimation and localization which
might be an application for the discussed selection
strategies. The previously described selection strate-
gies can be motivated as preprocessing step for, e.g.,
DOA estimation or tracking. In the following subsec-
tions, we are going to describe two exemplary algo-
rithms, which have been used in similar forms in lit-
erature: Clustering with a wrapped Gaussian Mixture
Model (GMM) has been used in [6] for blind source
separation and source counting of speech sources.
Clustering with a two-dimensional GMM has been
used in [12] for localization and in [13] for tracking
of multiple speakers in an enclosure.

6.1. Wrapped GMM Clustering

For the following basic DOA estimation approach,
we model the observed bin-wise DOA estimates by a
GMM, whose parameters have to be estimated. How-
ever, when the distribution of the bin-wise DOA es-
timates is modeled with a GMM, it can be observed
that the distribution wraps if a mean of a Gaussian
component is close to 0 or 2π and the respective Gaus-
sian component becomes bimodal. To solve this prob-
lem, [19] proposed a wrapped phase GMM modeling
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2
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θ̂(n) θs GMM fit

Figure 2. Fitting result of a wrapped GMM with and with-
out STFT bin selection by the combination of power-,
CDR- and SPP-based selection.

these effects

p(θ) =
N∏
n=1

S∑
s=1

αs

∞∑
ν=−∞

N
(
θ(n) + 2πν;µs, σ

2
s

)
.

Hereby, θ denotes the vector of all STFT bin-wise
DOA estimates, αs the class probability, µs the mean,
and σ2

s the variance of Gaussian component s. The pa-
rameters of the GMM can be estimated exploiting the
EM algorithm [20]. The mean of Gaussian component
s yields a Maximum Likelihood estimate of the DOA
of source s after a maximum number of iterations or
after convergence of the algorithm, i.e., θs = µs. An
example for fitting of a wrapped GMM can be found
in Fig. 2.

6.2. Narrowband Localization

In the following, we consider an ASN consisting of
Q sensor nodes covering the area of interest for lo-
calization of multiple simultaneously active speak-
ers. Hereby, the source locations can be estimated by
combining the observations of the distributed micro-
phones, e.g., triangulation. Due to the assumption of
W-disjoint orthogonality, i.e., only one source is as-
sumed to be active in a specific STFT bin, the prob-
lem of ghost sources, i.e., wrong combinations of DOA
estimates within one bin are disregarded.

In the following, all positions and DOAs are ex-
pressed w.r.t. a common room coordinate system. The
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Figure 3. Clustering result of the narrowband localization
with the 2D GMM without and with STFT bin selection.
The lines denote positions with equal Mahalanobis dis-
tance to the mean of a Gaussian component.

vector corresponding to array q pointing into the di-
rection of the source active in data point n can be ex-
pressed as qq(n) = p(n)− rq with the coordinates of
the array’s reference point rq =

[
rx,q, ry,q

]T. The po-
sition of source p(n) dominant in data point n can be
described using (7) by the following matrix-valued ex-
pression A(n)p(n) = b(n). Hereby, the matrix A(n)

contains the STFT bin-wise DOA estimates θ̂q of data
index n of the Q microphone arrays. The q-th row of
A(n) is defined as

[A(n)]q∈{1,...,Q} =
[
sin θ̂q(n) − cos θ̂q(n)

]
and the q-th element of the vector b(n) as

[b(n)]q∈{1,...,Q} = rx,q sin θ̂q(n)− ry,q cos θ̂q(n).

The position of the source active in data point n
can be estimated by a Least Squares (LS) approach
p̂(n) = A+(n)b(n).

The obtained narrowband position estimates p̂(n)
have to be clustered similarly as for the DOA estima-
tion in order to obtain reliable position estimates by
using, e.g., a two-dimensional GMM

p (p(1), . . . ,p(N)) =
N∏
n=1

S∑
s=1

αsN (p(n);µs,Σs)

and the EM algorithm. The class probability of clus-
ter s is denoted by αs, the mean vector by µs and
the covariance matrix by Σs. The localization result
is represented by the estimated mean vectors of the
Gaussian components, i.e., p̂s = µs.

It is desirable to have narrowband position esti-
mates scattered densely around the true source posi-
tions in order to get good clustering results and thus
reliable estimates of the positions. Preprocessing the
data by bin selection aims at enhancing the cluster
structure as shown in the following sections.

An exemplary result for the case of narrowband lo-
calization and clustering is shown in Fig. 3.
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Figure 4. Experimental setup for DOA estimation. A cir-
cular array consisting of four microphones is located at
(2.82m, 2m, 1.2m) in an enclosure of dimensions 8.8m×
3.75m×2.4m. The sources are located at radius rs = 0.8m
from the arrays reference point.

7. Experiments

The following subsections describe the experimental
setup, results of bin selection strategies as prepro-
cessing for the introduced DOA and localization al-
gorithms.

7.1. Setup

Experiments are conducted in a simulated enclosure
of dimensions 8.8m × 3.75m × 2.4m by simulating
Room Impulse Responses (RIRs) with the image-
source method [21] and the RIR generator [22]. The
sensor arrays and the sources are placed on a height
of 1.2 m. Circular sensor arrays consisting of four mi-
crophones with radius 1.7 cm are employed. The sam-
pling frequency is set to 16 kHz. The STFT of the ob-
served microphone signals has been computed using
a Hamming window, a Fast Fourier Transform (FFT)
length of 1024 and a frame shift of 256. Furthermore,
the frequency range for DOA estimation is limited
to [0.7 kHz, 1 kHz] for our experiments, which is com-
mon practice in DOA estimation and localization al-
gorithms relying on the sparsity of speech signal spec-
tra [10]. This is motivated by the fact that this fre-
quency interval contains most of the acoustical energy
emitted from a human speaker.

7.2. DOA Estimation

The sources are located at a distance of 0.8 m from
the center of the microphone array for the DOA es-
timation task. The corresponding experimental setup
is depicted in Fig. 4. The signal duration of the source
signals has been chosen to be about 14 sec including
an initial interval of 5 sec containing only noise.

In the following, we describe and discuss experi-
ments which evaluate the bin selection performance
of the considered strategies in general and investigate
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Figure 5. Performance of the different selection strategies
in dependence of varying thresholds for 30 dB SNR and
T60 = 0.3 sec.

the performance gain of DOA estimation compared to
no bin discarding.

A histogram of STFT bin-wise DOA estimates
which are clustered densely around the true source
positions is desired. Therefore, a measure to quantify
this cluster characteristic is introduced by defining

A10 =

{
θ̂(n)

∣∣∣∣ ∃θs : distwrap

(
θ̂(n), θs

)
≤ 10◦

}
.

which captures the set of STFT bin-wise DOA esti-
mates, which are in an interval of ±10◦ around the
true DOA of a source. Hereby, distwrap (·, ·) denotes
the absolute difference between two DOAs which
takes the wrapping at±180◦ into account. To quantify
the benefit of bin selection, the ratio of the number
of elements of A10, i.e., its cardinality, and the total
number of selected bins is considered. The result is
averaged over JDOA different realizations of the ex-
periment with randomly chosen source DOAs

A10 =
100%

JDOA

JDOA∑
j=1

|Aj10|
Nj

, (18)

where Nj denotes the total number of estimates after
selection in the j-th realization and |Aj10| the num-
ber of bins in an interval ±10◦ around a true DOA.
This yields the averaged relative amount of STFT bin-
wise DOA estimates in proximity to the true DOAs
w.r.t. all selected STFT bins. A10 takes on values in
percentage, with high numbers characterizing a his-
togram with most STFT bin-wise estimates in prox-
imity to a true DOA.

In addition to the A10 measure, the benefit of bin
selection for DOA estimation is evaluated by applica-
tion of the algorithm described in Sec. 6.1. To measure
the performance of the algorithm, the absolute error
of the DOA estimates w.r.t. the true DOAs is calcu-
lated. To this end, association between true DOAs
θs,j and estimated DOAs θ̂s,j has to be done, which
is accomplished by successively assigning the pairs of
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Figure 6. Relative amount of STFT bin-wise estimates in
10◦ intervals around the true source DOAs w.r.t. all es-
timates in dependence of the reverberation time T60 and
the SNR.

estimated and true DOAs with smallest distance to
each other. The overall performance of the DOA esti-
mation is expressed by the absolute averaged error

eDOA =
1

J · S
S∑
s=1

JDOA∑
j=1

distwrap

(
θ̂s,j , θs,j

)
, (19)

with the true DOA θs,j and estimated bin-wise DOA
of realization j θ̂s,j .
JDOA = 100 realizations of an experiment with 1, 2

or 3 sources with randomly chosen DOAs with mini-
mum angular separation of 70◦ have been conducted.
To investigate the influence of the choice of the thresh-
olds, the A10 measure and the averaged DOA es-
timation error eDOA are plotted together with the
amount of remaining bins in Fig. 5 for the power- and
CDR-based selection strategy for SNR = 30 dB and
T60 = 0.3 sec. The SPP-based method is not consid-
ered here as the threshold has to be chosen very tight
(γSPP = 0.99) in order to obtain satisfying results and
does not allow for variation of it. By evaluating these
figures it can be seen that for the CDR-based selection
a clear minimum of the localization error eDOA and a
clear maximum of A10 is obtained, whereas the power-
based selection has no distinct minimum of eDOA nor a
maximum of A10. It can be concluded, that the CDR-
based selection is beneficial for DOA estimation w.r.t.
localization error as well as computational complex-
ity and the power-based selection gives also a reduc-
tion in computational complexity but only marginal
improvement of localization error in this exemplary
scenario.

For power-based selection, thresholds γP ∈
[10−7, 0.04], for CDR-based selection thresholds
γCDR ∈ [8 · 10−4, 0.1] and averaging factors λ ∈
[0.1, 0.5], and for SPP-based selection the thresh-
old γSPP = 0.99 have been chosen according to
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Figure 7. Absolute averaged localization error in degrees
in dependence of reverberation time T60 and the SNR.
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Figure 8. Averaged amount of bins left after selection in
dependence of reverberation time T60 and SNR.

the best performance in each scenario w.r.t. (19).
Two kind of experiments have been conducted.
On the one hand, the reverberation time T60 =
0.12 sec, 0.3 sec, 0.6 sec, 1 sec has been varied while
keeping the SNR = 30 dB fixed. On the other hand,
the T60 = 0.12 sec has been kept fixed while the
SNR = 0 dB, 15 dB, 30 dB has been varied. The results
for both groups of experiments are shown in Fig. 6 for
A10 and in Fig. 7 for eDOA. Additionally, the reduc-
tion of data points by discarding is depicted in Fig. 8.

CDR-based selection is superior to all other meth-
ods w.r.t. A10 for high reverberation times, see Fig. 6.
This can be explained by interpreting the CDR as
a measure for the amount of reverberation in an
STFT bin. The combination with other methods only
slightly improves the results. For low reverberation
time and varying SNRs, the CDR- and power-based
selection show comparable results w.r.t. A10. Simi-
lar results are obtained w.r.t. DOA estimation perfor-
mance measured by eDOA, see Fig. 7. The SPP-based
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Figure 9. Localization performance for two sources with
random positions in dependence of different measures for
different reverberation times and SNRs.

method shows comparable results w.r.t. the power-
based selection for high T60 and is clearly worse for
low T60 and varying SNR values w.r.t. A10 as well as
w.r.t. eDOA. The number of bins remaining after se-
lection is comparable for power-based and CDR-based
selection w.r.t. the SNR, but only comparable for low
T60, see Fig. 8. The SPP-based method yields always
the largest number of remaining STFT bins.

In summary, CDR-based selection demonstrates its
benefits in scenarios with varying reverberation time
as well as SNR and discards in all cases the largest
amount of STFT bin-wise estimates (about 1% of
the bin-wise estimates is left after selection). There-
fore, this selection method yields the highest savings
for computational power as well as the highest im-
provement in DOA estimation performance in varying
acoustical scenarios.

7.3. Localization

For comparing the proposed strategies w.r.t. localiza-
tion, eight arrays configured as shown in Fig. 4 are
distributed in the room and narrowband localization
and clustering as described in Sec. 6.2 have been used
for localization of two speech sources. To calculate the
localization error, the association between true and es-
timated positions has been done by first assigning the
pair of estimate and true position with the smallest
distance to each other. The absolute localization error

eLOC =
1

J · S
S∑
s=1

J∑
j=1

‖ps,j − p̂s,j‖2 (20)

averaged over JLOC = 20 realizations of the experi-
ment has been computed to quantify the results. Sim-
ilar to the set A10, the set B0.5 of narrowband position
estimates with a distance smaller than 0.5 m to a true
source position is defined as

B0.5 =

{
p̂(n)

∣∣∣∣ ∃ps :
∥∥p̂(n)− ps

∥∥
2
≤ 0.5 m

}
.
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The ratio of the number of position estimates in this
set w.r.t. all position estimates averaged over the
JLOC random source positions is computed as

B0.5 =
100%

JLOC

JLOC∑
j=1

|Bj0.5|
Nj

, (21)

where Nj denotes the selected position estimates of
the j-th realization. The results of these experiments
are shown in Fig. 9 in dependence of the SNR and
T60. A similar trend as for the DOA estimation can
be deduced: CDR-based selection works best for high
reverberation times and is comparable with power-
based selection for varying SNRs. SPP-based selection
performs worse than the other selection strategies for
all cases.

8. Conclusions

Different selection strategies for STFT bin-wise DOA
estimates, namely power-, CDR-, SPP-based selection
and the combination of these three strategies have
been discussed in this contribution. It has been shown
that STFT bin selection increases the performance
of DOA estimation and localization while simultane-
ously reducing the computational complexity of the
underlying algorithms at the same time. Under the
investigated selection methods, CDR-based selection
achieved best results for a broad range of acoustical
scenarios.
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