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Summary

The impulse response is obtained for the directional dependence in the far �eld of a parabolic trans-

mitter formed by point source located at the focus of a paraboloidal re�ector. The impulse response

at the focus of a parabolic receiver as a function of the direction from which a plane wave is incident

on a paraboloidal re�ector is obtained via reciprocity. The corresponding step response is convolved

with the time derivative of the incident waveform to obtain the general transient response at the

focus of a parabolic receiver.

PACS no. 43.20.Fn, 43.20.Px

1. Introduction

Parabolic re�ectors are employed in acoustics and
electromagnetics as both transmitters and receivers to
concentrate energy coherently when the wavelength is
short compared with the size and minimum radius of
curvature of the re�ector. In the case of a transmitter,
a spherical wavefront emanating from a point source
at the focus of the paraboloid becomes approximately
planar following re�ection and radiates away as a col-
limated beam. For a receiver, an incident planar wave-
front propagating along the axis of the paraboloid is
converted following re�ection into an approximately
spherical wavefront that converges at the focus of the
paraboloid.

Analyses of paraboloidal re�ectors are tradition-
ally performed in the frequency domain; see espe-
cially Wahlström [1] for a frequency-domain analy-
sis of acoustical parabolic receivers and discussion of
earlier work. The present work is performed in the
time domain. In a previous time-domain analysis of
the acoustical transmitter, a transient solution along
the axis of a paraboloidal re�ector was obtained in
terms of an analytical expression for the impulse re-
sponse [2]. As in the case of an ellipsoidal re�ector [3],
the axial impulse response for a paraboloidal re�ector
consists of three terms, a pair of Dirac delta func-
tions corresponding to the beginning and end of the
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re�ected time waveform, and a third term, a continu-
ous distribution in time referred to as the wake, con-
necting the two delta functions. Tsai et al. [4] subse-
quently employed this approach to obtain a transient
axial solution for the parabolic receiver.

Presented here is a transient solution for the pres-
sure at the focus of a parabolic receiver in terms of a
step response that accounts for the propagation direc-
tion of an incident plane wave. The analysis begins by
extending the transient axial solution for a parabolic
transmitter [2] to obtain the angular dependence of
the impulse response for the re�ected pressure wave-
form in the far �eld. In the limit of a shallow re�ector
the expression for the pressure in the far �eld reduces
to the result obtained by Morse [5] for transient radi-
ation from a circular piston. The directional impulse
response for a parabolic receiver is then obtained via
reciprocity from the far-�eld impulse response for the
transmitter. The corresponding step response is con-
volved with the time derivative of the incident wave-
form to obtain the general transient response at the
focus of a parabolic receiver.

2. Far �eld of parabolic transmitter

A point source is located at the focus of a paraboloidal
re�ector that is symmetric about the z axis with ver-
tex at z = 0, focus at z = zf , and aperture in the plane
z = d. If a spherical wave emanating from the focus
is incident on the vertex with pressure p0f(t), then
the re�ected pressure pfar in the far �eld at spherical
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coordinates (r, θ) is given by

pfar(r, θ, τ)

p0
=

∫ ∞
−∞

hfar(r, θ, τ
′)f(τ − τ ′) dτ ′ (1)

where τ = t − r/c0 is retarded time, θ is the polar
angle with respect to the z axis,

hfar(r, θ, τ) =
c0

2πr

∫ d/zf

0

w(ζ, θ, τ)
dζ

1 + ζ
(2)

is the impulse response, and the angular dependence
is taken into account by the dimensionless function

w(ζ, θ, τ) =
[(c0τ/2zf )− ζ sin2(θ/2)] rect(τ ; τ−, τ+)

{ζ sin2 θ − [(c0τ/2zf )− ζ sin2(θ/2)]2}3/2

(3)

where

τ± = (2zf/c0)[ζ sin2(θ/2)± ζ1/2 sin θ] (4)

The rectangle function rect(τ ; τ−, τ+) is de�ned to be
unity for τ− ≤ τ ≤ τ+ and zero otherwise.
As in previous work [1, 2, 3, 4], the solution is based

on the use of geometrical acoustics to establish the
boundary condition for the pressure on the surface
of the re�ector. Geometrical acoustics su�ces when
the wavelength is short compared with the minimum
radius of curvature of the surface, corresponding to
kzf � 1 where k is the characteristic wavenumber
of the pressure �eld. Integration over the surface is
then performed using the far-�eld approximation of
the Green's function.
The solution on axis is obtained by recognizing that

lim
θ→0

w(ζ, θ, τ) = (4πz2f/c
2
0)δ′(τ) (5)

where δ is the Dirac delta function, such that substi-
tution of Eq. (2) in Eq. (1) yields

pfar(r, 0, τ)

p0
=

2z2f
c0r

ln

(
1 +

d

zf

)
f ′(τ) (6)

The primes on the functions δ(τ) and f(τ) signify the
derivative with respect to the argument. In contrast
with the axial solution in the near �eld [2], the impulse
response does not separate into three distinct terms,
two delta functions and a wake. Along the axis in the
far �eld the three contributions coalesce into the time
derivative of a delta function in Eq. (5), and o� axis
anywhere, near �eld as well as far �eld, the lack of
symmetry in the arrivals from the re�ector precludes
such a decomposition.
Arriving ahead of the re�ected wave in the far �eld

is the wave propagating directly from the point source.
The direct wave arrives in advance of the re�ected
wave by the time interval

∆t =
2

c0

[
z
1/2
f cos(θ/2)− d1/2 sin(θ/2)

]2
(7)

The di�erence in arrival times is a maximum on
axis, θ = 0, for which ∆t = 2zf/c0. In addition
to time delay, the axial amplitude of the re�ected
wave exceeds that of the direct wave by a factor of
∼ 2kzf ln(1 + d/zf ).
The far-�eld expression for re�ection of a plane

wave from a circular disk of radius a can be obtained
from Eqs. (1)�(4) by taking d → 0 such that the re-
�ector is planar, and zf → ∞ such that the incident
wavefront is planar over the surface of the re�ector.
The limits are taken in a way that maintains a �nite
value for the radius of the aperture of the paraboloidal
re�ector, which is given by a = 2(dzf )1/2. Equa-
tions (2)�(4) then yield for the impulse response

lim
d→0
zf→∞

hfar(r, θ, τ) = −
c20τ rect(τ ; τdisk− , τdisk+ )

πr sin2 θ
√
a2 sin2 θ − c20τ2

(8)

where τdisk± = ±(a/c0) sin θ. Substitution into Eq. (1)
and de�ning U(t) = (p0/ρ0c0)f(t) to be the e�ec-
tive velocity of the circular disk yields Eq. (28.12) of
Morse [5] for transient radiation in the far �eld of a
ba�ed circular piston (apart from an evidently mis-
taken factor of 2 in the denominator of Morse's ex-
pression).
Plots of w(ζ, θ, τ) as functions of τ are presented in

Fig. 1 for θ = 30◦ and three values of ζ = z/zf cor-
responding to re�ections from di�erent circular rings
on the surface of the paraboloid formed by the inter-
sections of planes perpendicular to the z axis. For an
impulse f(τ) = t0δ(τ) incident on a ring with small
axial width ∆ζ = ∆z/zf the pressure ∆pfar in the far
�eld is

∆pfar = p0
c0t0
2πr

w(ζ, θ, τ)
∆ζ

1 + ζ
(9)

The impulse response in Eq. (2) is the sum of the
waveforms re�ected from every such ring from the
vertex (ζ = 0) to the aperture (ζ = d/zf ) of the
re�ector. For �eld points o� axis (θ 6= 0), the dura-
tion T = τ+ − τ− = (4zf/c0)ζ1/2 sin θ of the signal
increases with ζ according to the limits in Eq. (4) be-
cause the rings increase in diameter, and the time be-
tween the �rst and last arrival of an impulse re�ected
from successively larger rings increases accordingly.
Similarly, for a given ring (value of ζ) T increases as
θ increases.

3. Focus of parabolic receiver

The re�ected pressure produced at the focus of a
parabolic receiver by an incident plane wave propa-
gating at angle θ with respect to the z axis is obtained
by applying the principle of reciprocity to the far-�eld
solution for the transmitter. Thus suppose the point
source for the transmitter is moved from the focus
to a location (r, θ) in the far �eld. The point source
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Figure 1. Time dependence of the function w(ζ, θ, τ) in Eq. (3) for θ = 30◦ and (a) ζ = 0.1, (b) ζ = 0.5, and (c) ζ = 1.

for the transmitter produces pressure p0f(t) at dis-
tance zf , but we want the point source to produce
the same pressure p0f(t) at the vertex of the re�ec-
tor, which is now at distance r rather than distance zf
from the point source. The amplitude of the spherical
wave emanating from the point source must therefore
be increased by the factor r/zf . Since the solution is
linear, Eq. (2) is scaled by the same factor to obtain

hfoc(θ, τ) =
c0

2πzf

∫ d/zf

0

w(ζ, θ, τ)
dζ

1 + ζ
(10)

for the impulse response of a point receiver at the
focus, where τ = t − zf/c0. Because r is arbitrarily
large, the incident wave may be considered planar in
the vicinity of the re�ector. Equation (10) is therefore
the desired impulse response for a plane wave incident
on the receiver at angle θ, with Eqs. (3) and (4) de�n-
ing w(ζ, θ, τ) as before.
The pressure at the focus is

pfoc(θ, τ)

p0
=

∫ ∞
−∞

hfoc(θ, τ
′)f(τ − τ ′) dτ ′ (11)

Since the de�nition of w(ζ, θ, τ) is unaltered, the limit
in Eq. (5) applies, and the pressure at the focus for a
plane wave at normal incidence is the familiar result

pfoc(0, τ)

p0
=

2zf
c0

ln

(
1 +

d

zf

)
f ′(τ) (12)

For characteristic angular frequency ω and corre-
sponding wavenumber k = ω/c0 the focusing gain is
G = 2kzf ln(1 + d/zf ). The incident wave arrives at
the focus in advance of the re�ected wave by the inter-
val of time given by Eq. (7), but for normal incidence
its amplitude is less by a factor of ∼ G−1.

4. Step-response formulation

Alternatives to Eqs. (1) and (11) are convolutions of
the unit step response s(θ, τ) =

∫ τ
−∞ h(θ, τ ′) dτ ′ with

the derivative of f(τ). In place of Eqs. (10) and (11)
one obtains for the re�ected pressure at the focus a
parabolic receiver

pfoc(θ, τ)

p0
=

∫ ∞
−∞

sfoc(θ, τ
′)f ′(τ − τ ′) dτ ′ (13)

where

sfoc(θ, τ) =

∫ d/zf

0

v(ζ, θ, τ)
dζ

1 + ζ
(14)

is the unit step response and

v(ζ, θ, τ) =
rect(τ ; τ−, τ+)

π
√
ζ sin2 θ − [(c0τ/2zf )− ζ sin2(θ/2)]2

(15)

is a dimensionless function that accounts for the di-
rectional dependence of the received waveform, the
integral of which over time is a constant, independent
of ζ and θ:∫ ∞

−∞
v(ζ, θ, τ) dτ = 2zf/c0 (16)

Equations (3) and (15) are related as follows:

w(ζ, θ, τ) = π
2zf
c0

∂

∂τ
v(ζ, θ, τ) (17)

For example, Eq. (12) is obtained from the step-
response formulation by noting that

lim
θ→0

v(ζ, θ, τ) = (2zf/c0)δ(τ) (18)

The corresponding step-response formulation for the
far �eld of a parabolic transmitter follows from reci-
procity:

pfar(r, θ, τ) = (zf/r)pfoc(θ, τ) (19)

The formulation in terms of the step response is mo-
tivated by examination of Eqs. (3) and (15) for w and
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Figure 2. Time dependence of the function v(ζ, θ, τ) in Eq. (15) for ζ = 1 and (a) θ = 3◦, (b) θ = 10◦, and (c) θ = 30◦.

v, respectively. Both functions possess singularities at
the temporal points τ = τ+ and τ = τ− given by
Eq. (4). Letting ε characterize the proximity |τ − τ±|
to either point, in the limit ε → 0 it is observed that
the singularities are order ε−3/2 in w compared with
order ε−1/2 in v. The order of the singularities in w
prevents integration of this function except in special
circumstances, such as in the limit θ → 0.
Plots of v(ζ, θ, τ) as functions of τ are presented in

Fig. 2 for ζ = 1 and three values of θ. Interpreted
in the context of a parabolic receiver, each waveform
corresponds to the pressure at the focus due to an in-
cident plane wave with time dependence f(τ) = u(τ),
where u(τ) is the unit step function, arriving at an-
gle θ and re�ecting from a circular ring of small axial
width ∆ζ on the surface of a paraboloid in the plane
determined by ζ:

∆pfoc = p0v(ζ, θ, τ)
∆ζ

1 + ζ
(20)

As θ becomes small, as in Fig. 2(a), the waveform ap-
proaches a delta function according to Eq. (18). At
θ = 0 the incident wave re�ects from every point on
the ring simultaneously. As θ increases, the duration
T = τ+ − τ− of the response increases because the
time between when the incident wave re�ects from
the closest and farthest points on the ring increases,
while the area under the curves in Fig. 2 remains con-
stant according to Eq. (16). Note that the parameters
used in Figs. 1(c) and 2(c) are the same, and therefore
according to Eq. (17) the waveform in Fig. 1(c) is the
derivative of that in Fig. 2(c).

5. Conclusion

A time-domain model is provided to examine the di-
rectional responses of parabolic transmitters and re-
ceivers for arbitrary incident waveforms. More com-
plete results, and derivations of the equations pre-
sented here, will appear in a future publication.
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