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Summary 
Duct acoustics usually deals with the duct with a hard-wall or soft-wall.  When a duct has a 
moving wall such as the vocal tract whose configuration changes with time, how will the acoustic 
characteristics of sound propagation be affected by the moving boundary of the duct? In this study, 
we combine the finite-difference time-domain (FDTD) with the immersed boundary method (IBM) 
to investigate the sound propagation in the ducts with a moving boundary. To replicate the 
property of a free space by a finite computational field, eight perfect matching layers (PML) were 
set around the computational field (CF) to absorb the outgoing waves. FDTD of the hybrid method 
discretizes the whole CF by a Cartesian grid (Eulerian points), which keeps the duct entirely 
immersed, while IBM uses a series of discrete control points (Lagrangian points) with added 
forcing to replicate the geometrical wall. When the wall moves, the Lagrangian points will travel 
in the CF. Numerical experiments were carried out on uniform, convergent and divergent ducts. 
As the results, computed sound pressure distributions demonstrate the physical properties of the 
ducts under a variety of conditions. The resonant frequencies of the ducts show reasonable 
accuracy with a maximum error of 10% comparing with the theoretical ones.  

PACS no. 43.20.Mv, 43.55.Ka, 43.70.Aj, 47.35.Rs 

 
1. Introduction1 

Simulation of sound propagation in a duct is a long 
standing issue in acoustic field. Many numerical 
analysis methods have been developed to simulate 
the sound wave propagation in a given field by 
discretizing the computational field (CF) with 
grids, such as the finite element method (FEM) [1, 
2] , boundary element method (BEM) [3], and 
finite-difference time-domain (FDTD) method [4, 
5]. Among these methods, FDTD plays a vital role 
in computational electromagnetics and acoustics 
due to its accuracy and high efficiency. 

Most of the applications of these methods 
were related to problems in a subject with fixed 
configuration, although in practice, many ducts 
have a moving boundary such as the vocal tract 
whose configuration continuously changes with 
time during speech. The difficulty for the 
computational field with moving boundary 
                                                      

 

 

becomes re-discretizing the meshes of the object 
every time step when its boundary changes. That is, 
complex geometry and moving boundaries often 
result in difficult situations for grid-based methods. 
To solve the problem, a possible way is to impose 
boundary conditions by transforming them onto 
the grid points close to the boundary. This would 
lead the computation to a difficult and time-
consuming process. For this reason, some 
alternative methods such as smooth particle 
hydrodynamics (SPH) [6] and immersed boundary 
method (IBM) [7] have been developed.  

The immersed boundary method (IBM) was 
proposed by Peskin [7] for the simulation of blood 
flow in the heart valves, which provides a possible 
solution to deal with the aforementioned 
difficulties. The main idea is to add a force field to 
the momentum equation to represent the immersed 
boundary. In this method, two different grid 
systems are employed. A regular Eulerian mesh is 
used to solve the fluid dynamics, a Lagrangian 
representation is used for the boundary, and the 
interaction between these two grids is modelled 
using a Dirac delta function. 
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In this study, we proposed a hybrid method 
that integrates the FDTD and IBM to simulate the 
propagation of acoustic waves in the ducts with 
moving boundaries. The paper is organized as 
follows. Section 2 briefly introduces the governing 
equations, FDTD method and IBM. In Section 3, 
three series of numerical experiments are 
conducted on a uniform duct, the convergent and 
divergent ducts, and time-varying ducts. The 
performance of the hybrid method is evaluated in 
Section 4. Discussion and concluding remarks are 
given in Section 5. 
  

2.  Governing equations 

In this study, we attempt to investigate how the 
acoustic properties of the sound propagating in a 
duct are affected by its moving boundary. For the 
acoustic problems considered herein, the medium 
is approximated as a non-viscous fluid, and thus 
the dominant governing equations can be given by 
the Euler equations or even the linearized Euler 
equations [8]:   ݇ డ௣డ௧ − ݌ߙ = ∇ ∙ ࢛ (1) 

*u
a p

t
 

  


u   (2) 

where p  and u  are the pressure and the particle 
velocity respectively,  is the density of the 
medium and  is the compressibility of the 
medium and is defined as 2c , where c  is sound 
speed in the medium,  and *  are the attenuation 
coefficients associated with compressibility of the 
medium. While defined as /   in the absorbing 
boundary layers, *  is set to zero in the analysis 
region.  
 

2.1 FDTD method 

Finite-difference time-domain (FDTD) method is a 
numerical approach proposed by Yee [9] in 1966 
and was originally designed for the simulation of 
electromagnetics. Recently, it has been 
successfully applied to acoustics [10]. 

       In FDTD, the governing equations are 
calculated on a staggered grid with second-order 
central difference for spatial derivatives and leap-
frog scheme for temporal derivatives [11, 12]. After 
discretization, we have: 
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where 1/ 2 ( , )np i j  is the sound pressure on the grid 

of ( , )i j  at the time step of n+1/2 and is the sum of 

pressure along x, y directions, i.e. 1/ 2 ( , )n
xp i j and 

1/2 ( , )n
yp i j , ( 1 / 2, )n

xu i j  and ( , 1/ 2)n
yu i j   represent 

the components of particle velocity in the x and y 
direction, respectively, ∆t is a time interval of 
sampling, and x , y are the grid size in the x and 
y direction, respectively. 
 

2.2. Immersed boundary method 

Immersed boundary method (IBM) was proposed 
by Peskin [7]  in 1970s and now is used in various 
complex flow simulations [13]. A definition sketch 
of IBM is shown in Fig. 1. Using this method, any 
geometry such as complex or moving boundary 
can be simulated easily. To better treat the moving 
boundary, a modified IBM was developed by Deng 
et al. [ 1 4 ]  and recently applied to study the 
mechanism of tandem flapping wings [15]. In this 
approach, the flow field is discretized by a regular 
Cartesian grid (the corresponding points are called 
Eulerian points), the complex geometry or 
moving boundary is represented by a series of 
Lagrangian points (see Fig. 1(a)). To construct the 
relationship between these two grids, a force field 
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