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Summary 

Enhancing the broadband attenuation of low-frequency noise using compact, lightweight and 
fiber-free acoustic liners is still a challenging task in air conditioning systems, but also in exhaust 
and intake ducted flows. Locally-reacting Helmholtz resonators can be tuned and optimized to 
efficiently dissipate noise in a narrow mid-frequency range. A periodic combination of several 
resonators is known to provide a broader bandwidth of the noise attenuated at mid-frequencies, 
albeit at constant value of the total power over the attenuation bandwidth. In this work, a 
theoretical study examines the efficiency of a periodic array of Ultrathin Helmholtz Resonators 
(UHR) to attenuate low-frequency noise components over a broad bandwidth, well below the first 
cut-on frequencies of the duct and of the resonators neck and cavity. Each side-branch resonator is 
composed of a cylindrical neck backed by a coplanar coiled air chamber that significantly 
increases the acoustic path length in the cavity while keeping a sub-wavelength depth of the cavity 
at the resonator Helmholtz resonance. A transfer matrix formulation is derived to calculate the 
Transmission Loss (TL) of the array of resonators, averaged over the number of resonators. The 
TL results tend towards the dispersion curves of the unitary transfer matrix as the number of 
resonators increases, revealing the emergence of stopping and passing bands that respectively 
inhibit and allow the propagation of sound waves in the duct. The attenuation characteristics of the 
array of UHRs are compared to that due to arrays of classical Helmholtz resonators in the no-flow 
and uniform flow cases. Of interest is to find an optimal periodic distance between the resonators, 
typically half the acoustic wavelength at the Helmholtz resonance, in order to broaden the 
bandwidth of the first stop-band in the low-frequency range. 

PACS no. 43.50.Gf, 43.20.Mv 

 
1. Introduction 

The difficulty in the design of acoustic absorbers, 
being both efficient in the low frequency range 
while maintaining a reasonable size as a linear 
dissipative system, is an open problem subjected to 
current research. The classical Helmholtz 
Resonator (HR) constitutes a standard noise 
control device that provides good absorption 
values, but confined within a narrow frequency 
band [1]. To enhance their acoustical performance, 
different types of resonator combinations can be 
used. This is the physical approach considered for 
a locally-reacting partition composed of single or 
multiple layers of perforated or micro-perforated 
panels backed by a cavity filled with honeycomb 
material and undergoing plane wave forcing. High 

absorption is achieved by energy dissipation from 
the viscous friction forces on the perforation holes 
when the acoustic boundary layer is of comparable 
thickness to the holes radius at the resonance 
frequency of the backing cavity. 
In ducts, attenuating the propagation of plane 
waves at low frequency finds applications in noise 
mitigation of air conditioning systems in buildings 
as well as in surface and air transport domains. For 
instance, an array of dissimilar HRs has been 
considered by Trochidis [2] as an alternative to the 
conventional types of dissipative mufflers under 
plane wave propagation condition. The effect of 
several parameters on the Transmission Loss (TL) 
was studied, including the position of the longer 
and shorter resonator elements as well as the 
length of their openings for a given combination of 
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elements. A slightly different approach has been 
proposed by Bradley [3] that considered a periodic 
waveguide filled with a viscous and heat-
conducting fluid under a time harmonic excitation. 
The duct was composed of localized scattering 
sections connected by lengths of uniform 
waveguides. It was shown that this system can be 
described by forward and backward travelling 
Bloch wave functions, leading to various 
propagation features linked to axial standing 
waves and scatterer's resonances. A similar 
analysis has been pursued and applied to the 
attenuation of sound propagating in a train tunnel 
by means of a periodic array of HRs to avoid the 
formation of shock waves [4]. Special attention 
has been paid to the wave dispersion 
characteristics due to wall friction and to the 
thermoviscous diffusivity of sound. The authors 
explained the emergence of "stopping bands" that 
selectively inhibit the propagation of sound waves, 
and "passing bands" over which the sound waves 
propagate, but exhibit dispersion due to the 
periodic arrangement of resonators. In particular, 
when the axial spacing between the neighboring 
resonators becomes multiple of a half wavelength 
of sound waves, Bragg reflection occurs, hence 
blocking the forward transmission of sound. The 
sound waves then become evanescent and are 
rapidly damped so that they cannot propagate 
further away. When the frequency due to the side 
branch Helmholtz resonance coincides with that 
due to the Bragg reflection, the bandwidth of 
attenuation is significantly widened. 
Wang and Mak [5] have built their model upon 
this description to study a periodic combination of 
side-branch resonators mounted in a one-
dimensional duct without flow. They have 
combined Bloch wave theory with the transfer 
matrix method and focused on sound attenuation at 
low to medium frequencies, positioning the nearby 
resonators at a distance much larger than the neck 
diameter of each individual device. The analytical 
model has been successfully compared against a 
three-dimensional finite element model and against 
measurements performed on an experimental setup 
consisting of a duct with five identical side branch 
resonators and a loudspeaker mounted on one side 
and two-loads on the other side. The results 
showed an averaged TL between 3-15 dB 
extending below 600 Hz over a broader frequency 
range than that of a single resonator. 
Although these works show promising results, the 
required dimensions of the resonators becomes 

prohibitively large for real-life problems when one 
aims at progressively decreasing the frequency of 
maximal attenuation. In order to be able to 
diminish the Helmholtz resonance frequency 
without increasing the cavity depth, we propose in 
this work to coil the path followed by the 
acoustical wave in the cavity resonator. This is an 
effective way to increase the acoustic path length 
while constraining the required total size of the 
resonator. Such devices have been already 
investigated by Li and Assouar [6], considering a 
perfect acoustic absorber with deep subwavelength 
thickness under a normal incidence wave pressure 
field. Assuming a partition composed of a 
perforated plate with each perforation cell backed 
by a straight air cavity, they realized that a critical 
parameter governing the absorption performance 
value was the effective length path followed by the 
acoustic wave within each cell rather than the 
cross-sectional area of the back cavity. They 
showed that a coiled coplanar air chamber instead 
of a straight air cavity was able to provide an 
effective path length that significantly decreases 
the absorber Helmholtz resonance frequency. The 
normal incidence absorption spectrum predicted by 
their analytical model was confirmed against 
numerical results from a commercial finite element 
software. With a reduced panel-cavity thickness of 
only 12.2 mm, a perfect absorber has been 
achieved at 125.8 Hz, the Helmholtz resonance 
frequency of the system. This perfect absorption 
was however very localized around this frequency. 
In the present study, we propose a combination of 
the solutions considered in [5] and [6] to design a 
duct noise control device that presents good 
attenuation properties at low frequencies and over 
a broad frequency range. We aim at combining the 
previous solutions, e.g. coiled up back space in the 
partition to increase the effective path length and 
decrease the Helmholtz frequency in conjunction 
with a periodic array of Helmholtz resonators to 
create stop- and pass-bands to enhance the 
attenuation over a broad bandwidth. 
The paper is organised as follows: in Sec. 2, we 
expose an analytical model that estimates the TL 
of a periodic array of HRs in the low- to mid- 
frequency range. This model is compared against 
published results present in the literature. A 
parametric study is performed in Sec. 3 on the 
attenuation spectra to extract the main physical 
constitutive parameters that need to be selected for 
the design of optimal HR arrays depending on the 
particular cost function to be fulfilled. This study 
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is expected to bring insights into the physical 
mechanisms governing the existence of stop- and 
pass-bands. Finally, the main conclusions and 
perspectives will be summarised at the end of the 
work. 
 
2. Analytical model 

In this section, we briefly present the analytical 
propagation model that corresponds to the physical 
arrangement shown in Fig. 1. We sequentially 
model the main physical components by increasing 
degree of complexity, considering first a single HR 
and then a periodic structure composed of a 
straight duct with coupled side-branch HRs. Each 
HR is then assumed to be backed by a coiled air 
chamber rather than by a straight air cavity. 
Characteristic wave types are then calculated. 

2.1. Helmholtz resonator input impedance 

The input impedance bZ  at the HR neck can be 

written in terms of the pressure 1p  and velocity 1v  
at the neck entrance as 
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where 1S  and pS  are respectively the cross-

sections of the neck and of the backing cavity of 
depth 1D . The first term is the resonator neck 
transfer impedance that can be described by the 
model of Maa [7] for a single hole of diameter 1d  
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with 115 smkg10798.1 −−−⋅=η , the dynamic 

viscosity of air at C20o  and ( ) ( )ωvisc.11 2 rdk = , 

the perforate constant defined as the ratio of the 
opening radius to the viscous boundary layer 

thickness, ( ) ωρηω 0visc. =r . Eq. (2) is 

composed of three terms: the first term takes into 
consideration the hole internal impedance, the 
second term extra damping due to the added 
external resistance and the third reactance term 
considers the added mass external correction. 
According to [8], 8cor =  is assumed for a sharp-
edged hole. 

2.2. Periodic array of HRs 

The single HR described in Sec. 2.1. is taken here 
as the base piece to build a periodic structure. The 
physical configuration is inspired by the system 
presented by Wang and Mak [5]. It is composed of 
a rigid duct of cross-section 

dS  with multiples 

side-branch resonators. The unit cell periodically 
repeated consists of one resonator plus an axial 
duct length D . One assumes that the frequency is 
well below the first duct, neck and cavity cut-on 
frequencies and only plane waves are considered. 
 
 
 
 
 
 
 
 
 
 
Figure 1. Sketch of a side-branch array composed 
of a HR unit cell periodically repeated over the 
duct axial length. 
 
For each particular th

n  unit cell, the pressure field 
is expressed as a combination of right-going and 
left-going plane waves with unknown amplitudes. 
We need to apply appropriate continuity 
conditions for the pressure and the acoustic flow 
rate at the interface nDx =  to obtain a linear 

22 ×  algebraic system that relates the incoming 
and outgoing plane wave amplitudes as 
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the transfer matrix of the unit cell [5]. If we 
consider an array of RN

 
resonators, the total 

transfer matrix can be calculated as the product of 
the individual transfer matrices 
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where it has been assumed that TT =i
 as the 

resonators are identical. In the particular case of a 
semi-infinite duct with an anechoic termination on 
the right side after the last HR (see Fig. 1), there 
are no waves reflected backwards so that the 

reflection coefficient is zero-valued and 0=−

RNC . 

From Eq. (3), the transmitting coefficient reads 
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and the averaged TL is given by 
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assuming a unit incident plane wave, 10 =+C . 

2.3. Coiled backing cavity 

In the lossless case, the input impedance of the 
Helmholtz resonator has been given in Sec. 2.1. by 
Eq. (1). For simplicity, we consider a square cavity 
of length (and width) a  so that the neck and 
cavity cross-sectional areas are expressed as 

4/2
11 dS π=  and 2

aS p = . In the coiled resonator, 

the cavity depth of the classic resonator 1D  is 

replaced by cD1 , the effective length path of the 

acoustic wave. Assuming p  turns in a rectangular 
folded pattern with quarter-circle path at each 
bend, the total effective acoustic path length reads 

apbwpD c )1(22)12(1 −++−= π ,  (8) 

provided that abwp =+ )(2  with w  the distance 
between two walls and b  the wall thickness. 
Viscous losses may occur between the walls of the 
labyrinth, whose separation distance w  might be 
less than twice the viscous boundary layer 
thickness ( )ωvisc.r . This adds further dissipation to 

the losses already accounted for by the model of 
Maa in the neck. The terms 0Z  and 0k  in Eq. (1) 

are then replaced by lossZ  and lossk  
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where the friction coefficient, 47.1friction =C , is 

calculated as ( ) rpC 11friction −+= γ . 

4.1== Vp ccγ  is the ratio of the air specific heat 

at constant pressure and volume respectively, 

72.0== Tpr cp κη  is the Prandtl number and 

Tκ  is the air thermal conductivity.  

2.4. Wave propagation properties 

As the periodic system under study is invariant 
under axial translation, the solution in any cell of 
the structure can be expressed in terms of the 
solution in any other cells by repeated application 
of the transmission relation. For an infinite number 
of resonators, it is described using Block wave 
theory [9] by the condition )()( xfeDxf µ=+ , 
that allows the relation (3) on the pressure 
amplitudes between two cells to be written as [5] 

[ ] [ ]TT

11 e −+−
+

+
+ = nnnn CCCC µ ,                   (11) 

with µe  the eigenvalue of the transfer matrix T . 
The analysis of the characteristic wave solutions is 
then reduced to the eigen-analysis of T . The 
eigenvalue µe  determines the propagation of a 
particular wave type defined by its corresponding 

eigenvector [ ]T−+
vv  that contains a linear 

combination of positive and negative-going plane 
waves. The solutions µ  are complex-valued and 

composed of a real part, rµ , the attenuation 
constant, that describes the attenuation of energy 
of the travelling waves, and an imaginary part, 

iµ , 

the phase constant, responsible of phase changes 
through the waves propagation. Frequency ranges 
occur in which 0=rµ  and 0≠rµ  denoted pass 
and stop bands, respectively. In the case of a semi-
infinite duct, only the positive-going plane wave 
exists and Eq. (11) can be simplified to 

[ ] [ ] NnvvaCC nnn ,,2,1,
T

11

T
K== −+−+ .  (12)  

Considering that the solution of the system can be 
obtained by the periodic application of the 
transmission relation (3), the complex constant na  

is expressed as 1
11

−= n

n aa λ [5].  

 
3. Sound attenuation by periodic arrays 

of Helmholtz resonators 

Once the analytical model has been established, 
the results will be verified against other works in 
the literature. They will also be used as a design 
tool for predicting the expected attenuation 
performance and for a proper optimization of the 
physical parameters considering different cost 
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functions. In particular, we will focus on the study 
of two main constitutive parameters such as the 
effective acoustic path length in the resonators 
cavity and the axial separation distance between 
two consecutive resonators in order to maximize 
the averaged TL in the low frequency range. By 
default, the HRs used in the simulations have the 
following nominal parameters: a neck diameter 

cm5.31 =d , a neck length cm55.41 =t  

connected to a square cavity of depth cm41 =D  

and of surface area 2cm33.833.8 ×=pS . Each HR 

is plugged onto the top wall of a semi-infinite rigid 
rectangular duct of cross-sectional area 

2cm63.363.3 ×=dS  without flow.  The HRs are 

evenly separated by a distance cm40=D . For 
comparison purposes, these parameters are those 
used in [5] in which a planar wave regime is 
assumed in the duct, but not in the neck nor in the 
cavity, leading to a modal formulation for the HR 
input impedance bZ . In our case, simulations are 

conducted up to 1 kHz, well below the first duct, 
neck and cavity cut-on frequencies, respectively at 
4250 Hz, 4857 Hz and 1810 Hz. A plane wave 
regime has been assumed in all the fluid domains, 
including at the neck-cavity interface. 

3.1. Sound attenuation by HR arrays 

Figure 2 compares the averaged TL of an array 
made up of 5 HRs to that of a single HR assuming 
for bZ  either Maa's single hole model given by 

Eq. (2) or Ingard's model, given in Sec. 4.5.3 of 
[1], for the transfer impedance 1pZ  of the neck.  

 
 
 
 
 
 
 
 

 

 

 

 

Figure 2. Influence of the input impedance model 
on the averaged TL of side-branch resonators 
made up of a single HR (dashed blue: Maa; dashed 
green: Ingard) and an array of 5=RN  equally 
spaced HRs (thick blue: Maa; thick green: Ingard). 

Figure 2 well compares with Fig. 8 from [5]. It 
shows that a major feature due to a periodic array 
of HRs is to provide extra bandwidths over which 
the sound attenuation is enhanced with respect to 
that of a single HR that only exhibits a sharp and 
narrow peak centred around its Helmholtz 
resonance frequency Hz411H =f . A periodic 
array of HRs provides an averaged TL greater than 
that due to a single HR over the bands 

Hz380248− , Hz630465−  and Hz982843− . 

Above Hf , stop bands appear around the so-called 

Bragg resonance frequencies, B,nf , that occur 

whenever the separation distance between two 
resonators comprises an even or odd number of 
half-wavelengths, e.g. when 1,B, ≥= nnDkn π  or 

equivalently when ( )Dncfn 20B, = . This creates 

pressure-release local axial resonances between 
two consecutive neck-duct junctions that block the 
propagation of sound waves, as observed in Fig. 2 
over the bands Hz650425−  and Hz1000820− .  
Moreover, both Maa and Ingard models provide 
very similar averaged TL values whatever the 
number of resonators, with a Helmholtz resonance 
frequency predicted by Ingard's model at 414 Hz, 
slightly above that predicted by Maa's model at 
411 Hz. This is due to the added length of the neck 
correctly estimated by both models at the neck-
duct interface, but overestimated at the neck-cavity 
junction by Maa's model that assumes piston 
radiation in a baffled aperture. This error decreases 

when the cavity surface area pS  increases. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Influence of the spatial period on the 
averaged TL of an array made up of 5 HRs: 

cm40=D  (dashed blue), cm42opt == DD  (thick 

red) and %2opt ±= DD  (thin blue with circles). 
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Figure 3 shows the influence of structural 
periodicity on the averaged TL of an array made 
up of 5 HRs. In accordance with [10], there exists 
an optimal separation distance optD  between two 

consecutive resonators that maximizes the 
bandwidth of the averaged TL around Hf . It is 
achieved when the Helmholtz frequency coincides 
with the first Bragg resonance frequency, e.g. 
when ( )opt0B,1H 2Dcff == . From Fig. 3, it can 

be seen that increasing the spatial period between 
the HRs from cm40=D  to cm42opt =D  
significantly broadens the width of the first stop 
band, due to merging between the Helmholtz and 
the first Bragg resonances. Hence, the first stop 
band now ranges between 230 Hz and 630 Hz, but 
this is achieved at the expense of a reduction in the 
averaged TL peak value from 31dB down to 16 
dB. Figure 3 also shows that applying a random 
perturbation of only 2% standard deviation to the 
optimal separation distance breaks the coincidence 
effect, reduces  the bandwidth of large attenuation, 
while it sharpens and increases the averaged TL 
peak value. Also, the high-order Bragg stop bands 
do not appear anymore in this case. Hence, 
optimising the attenuation performance of the HR 
array appears to require a fine tuning and a low 
variability of the HRs separation distance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Influence of the number of resonators on 
the averaged TL of a periodic array of HRs with 
optimal separation distance: 1=RN  (green), 

3=RN  (dash-dotted blue), 5=RN  (dashed 
blue), 10=RN  (thick blue) and an infinite 
number of HRs (magenta with circles).  
 
Figure 4 clearly shows that, as the number of 
resonators increases, the averaged TL of an array 
with optimal separation distance between the HRs 
asymptotically tends towards the attenuation 

constant, ( )rµelog20 10 , that assumes an infinite 

number of resonators and which results from an 
eigen-decomposition of the transfer matrix of the 
unit cell, as seen in Sec. 2.4. One observes that the 
asymptotic axial attenuation at the two first stop-
bands is already well approximated with 5 
resonators, albeit with a TL peak value higher than 
the asymptotic one. This convergence result is also 
observed if the HR separation distance is not 
optimal. 

3.2. Sound attenuation by UHR arrays 

It has been seen that a single HR with a shallow 
cavity is efficient to attenuate the propagation of 
tonal noise in the mid-frequency range. Moreover, 
it was shown that periodic arrays of HRs exhibit 
broad stop-band over which the axial attenuation is 
enhanced.  For instance, Fig. 4 shows that the first 
stop band starts at 230 Hz. Of interest is to shift 
the stop bands towards lower frequencies while 
keeping the same cavity depth for the HRs.  
This can be achieved by inserting a rectangular 
coil in the cross-sectional plane of the square 
cavity, centred on the neck-cavity opening and 
whose height occupies the whole cavity depth. 
According to Eq. (8), for a given length (or width) 
of the cavity, the thickness of the coil walls, their 
separation distance and the number of folding 
turns determine a desired acoustic path length in 
the cavity, and so enable to tune Hf  to lower 
frequencies. Note that w2  should stay greater than 
the neck diameter in order to avoid obstruction of 
the neck-cavity opening.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Influence of a coiled cavity on the 
averaged TL of a single HR (dashed curves) and of 
a periodic array of 5 HRs (thick curves) 
considering an air cavity (blue) or a folded 
rectangular path in the cavity cross-sectional plane 
(red). 
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Figure 5 shows that a periodic array of 5 coiled 
UHRs, with an optimal spatial period 

cm67copt, =D  and 2=p  turns in each cavity, 

shifts the Helmholtz resonance frequency from  
411 Hz down to Hz256c,H =f  while achieving 

broad attenuation bandwidth that extends between 
146 Hz and 380 Hz, with a peak attenuation value 
similar to that of the HR array. This first stop band 
still results from coincidence between cH,f  and 

B,1f . The maximum attenuation is reached for a 

subwavelength cavity depth of 34c,Hλ  with c,Hλ  

the acoustic wavelength at the Helmholtz 
resonance, but a more characteristic lengthscale to 
consider should be 1,cD , the effective acoustic path 

length in the coiled resonator, which is only 
5c,Hλ  at 256 Hz. 

At 808 Hz, one observes in Fig. 5 a narrow, but 
high amplitude attenuation peak. It is the first 
high-order quarter-wavelength resonance of the 
HR that, in a first approximation, occurs at  

( ) ( )[ ]1c,10c,41, 412 tDcnfn ++=
 

with 1≥n . It 

overestimates by 7% for 1=n  the frequency of 
maximal attenuation, and by less than 2% the 
higher-order peaks ( 2≥n , not shown). These 
resonances occur due to the back-cavity cross 
section of the coiled resonator, 2

c, 4wS p = , being 

only slightly greater than the neck cross-section 

1S , so that 7.11c, ≈SS p
 for the UHR array 

whereas 6.71 ≈SS p
 for the HR array. Note that 

1c, SS
p  tends to 1 as the number of turns in the 

folded resonator increases, e.g. when one aims at 
lowering the UHR Helmholtz resonance 
frequency. It was found that increasing the number 
of turns further decreases Hf  but the bandwidth of 
the first stop band decreases accordingly, so that, 
not only the spatial period, but also the UHR 
constitutive parameters such as 1d , 1t  

and 
p

S
 

should then be optimized to enhance the 
attenuation bandwidth.  
Figure 6(a) confirms that the amplitude and 
bandwidths of the attenuation stop-bands achieved 
by an array of 5 HRs and UHRs are already close 
to their asymptotic values reached when assuming 
an infinite number of resonators and obtained from 
an eigen-analysis of their transfer matrices. It can 
be seen from Fig. 6(b) that two neighboring cells 
exhibit phase inversion within the first stop-band, 
but also within the odd higher-order stop bands 
whereas in-phase response is observed within the 

stop-bands of even orders. Phase inversion due to 
the Helmholtz resonances at 256 Hz (resp. 411 Hz) 
for the UHR (resp. HR) arrays can be seen through 
a narrow gap at these frequencies within the first 
stop band. If the resonators separation distance 
was not optimized, the gap would sharply decrease 
down to zero due to a marked phase inversion at 
the Helmholtz resonance.    

 

 

 

 

 

 

 

 

 
 
Figure 6. Influence of a coiled cavity on the 
attenuation constant (a) and on the phase constant 
(b) of a periodic array of HRs considering an air 
cavity (blue) or a rectangular coil in the cavity 
(red). 

3.3. Effect of a uniform flow 

Figure 7 shows the effect of a low speed uniform 
grazing flow on the attenuation performance of HR 
and UHR arrays. Rice’s model [11] has been used 
to describe the input resistance at the neck-duct 
opening of a Helmholtz resonator under grazing 
flow conditions. According to what is reported in 
[1] and [11], grazing flow increases the acoustic 
specific resistance by a fraction (0.5) of the Mach 
number. As for the reactance, it is agreed that 
grazing flow decreases the outer end-correction of 
the neck length at the neck-duct opening. 
Cumming’s empirical reactance model [12] has 
been implemented. It provides a reduced end-
correction whenever the frequency f  is lower 
than 1

*
du  with 1* 8.1 −= msu  the friction velocity 

associated to a low speed Mach number of 0.15 
and a turbulent Reynolds number of 410.8 . It can 
be seen from Fig. 7 that the resistance added to the 
HRs and UHRs by the flow decreases by about 10 
dB the peaks of averaged TL and slightly increases 
the widths of the first stop-bands. The flow mass 
end corrections due to the low flow speed provide 
minute increases of the Helmholtz resonance 
frequencies.   
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Figure 7. Influence of a uniform flow at Mach 0.15 
on the averaged TL of a periodic array of 5 HRs 
(blue) and UHRs (red) without flow (dashed 
curves) and with flow (thin curves). 

4. Conclusions 

An analytical model has been delineated to predict 
the averaged TL of periodic arrays of HR and 
UHR side-branch resonators in the flow and no-
flow cases. In the no-flow case, Ingard and Maa 
impedance models for the HRs neck provide 
similar averaged TL values. A periodic array of 
HRs provides extra bandwidths due to Bragg 
resonances and over which the sound attenuation is 
enhanced with respect to that of a single HR that 
only exhibits a sharp peak centred around its 
Helmholtz resonance, here at Hz361 . Optimizing 
the spatial period between the HRs at half the 
Helmholtz resonance wavelength significantly 
broadens the width of the first stop band, due to 
merging between the Helmholtz and the first 
Bragg resonances. But, this advantage is lost by 
slight perturbations of the HR structural 
periodicity. They still enable to achieve a trade-off 
between large bandwidth or high peak level of 
sound attenuation at the Helmholtz resonance 
frequency. Coiling up the partition back space 
significantly downshifts the Helmholtz resonance 
towards low frequencies, here from 411 Hz to   
256 Hz while keeping a constant cavity thickness 
of 4 cm. Meanwhile, stop- and pass-bands are 
maintained by the periodic structure of the array.  
A uniform low-speed flow of Mach lower than 
0.15 adds extra resistance to the HR and UHR 
input impedance, thereby decreasing by about 10 
dB the averaged TL peak, with only a slight effect 
on the reduction of mass-end correction at the HR 
and UHR openings. In presence of flow, micro-
perforated patches should be inserted at the neck-
duct openings to avoid pressured drops along the 

side-branch resonators and their influence on the 
averaged TL should be assessed.  
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