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Summary
Acoustic scattering is defined as the disturbance of a given incident sound field due to an object’s
shape and surface properties. The effect of scattering can be expressed in terms of a scattered sound
field, which is calculated as the difference between the sound field when the object is present and the
incident field without the object. The scattered sound field obeys Sommerfeld’s radiation condition.
Therefore its radial dependence (spherical decay) and its angular dependence can be separated in the
far-field. The angular component, so-called the far-field pattern, is a complex directivity function,
which is uniquely determined by the scattering object for a given incident sound field. Therefore,
this quantity constitutes a good scattering measure, which includes both scattering from the surface
(roughness scattering) as well as from the shape of the object (volume scattering). There are two
main challenges associated to measuring the far-field pattern directly: i) it requires large distances
between the object and the measurement points, and ii) the incident and the scattered fields need
to be separated. In this study, we propose a method to estimate the far-field pattern via near-field
pressure and particle velocity measurements. The sound field is measured on a closed arbitrary
surface enclosing the object. The far-field pattern is estimated from an asymptotical formulation of
the Helmholtz Integral Equation. It is possible to use either the total sound field or just the scattered
part in the integral. Boundary element simulations show that the far-field patterns of different objects
are correctly recovered, provided that the measurement points are less than half a wavelength apart.

PACS no. 43.20.Fn, 43.55.Br

1. Introduction

The widespread use of diffusers in room acoustics has
led to the development of methods to characterize
surface scattering, both for design and modeling pur-
poses [1]. Surface scattering refers to the scattering
of sound waves when they are reflected by a rough
surface. The common approach to characterize it is to
study the properties of the sound field reflected by the
surface. The reflected sound field is most completely
described by its directional distribution, as suggested
for instance in [2]. However, such a distribution con-
tains a large amount of data, which has led to the
definition and the standardization of single-number
coefficients (scattering coefficient [3] and diffusion co-
efficient [4]) in ISO [5].

The existing methods to evaluate surface scatter-
ing present three issues. The first issue is that the
size of the sample is usually disregarded, which poses
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a problem of definition. For a finite-sized sample at
low frequencies, the so-called reflected field is in fact
the result of both surface scattering and edge diffrac-
tion. Measurement methods based on sample rota-
tion, like the ISO scattering coefficient method [5],
addressed this issue by preferring circular samples,
so that only surface scattering varies with rotation.
Mommertz also proposed an alternative scattering co-
efficient that compares the sample to a flat reference
sample of the same dimensions [7]. However, it has
been shown that this coefficient does not necessarily
match other definitions of the scattering coefficient [8].
A second issue is that the sound field must generally
be measured in the far-field, as the reflected field con-
tains interference effects close to the surface [4]. The
required large measurement distances can be difficult
to achieve in practice. This explains the frequent use
of scale models in the literature. Alternatively, Kleiner
et al. made use of near-field acoustical holography to
estimate the pressure in the far-field, by measuring
the pressure on a plane [9]. Still, the sample needed to
be mounted on a totally absorbing baffle, so that the
measurement domain could be limited to a finite re-
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gion. Müller-Trapet [10] also proposed to use a spher-
ical harmonic decomposition on the measured pres-
sure field to extrapolate the far-field pressure, which
requires a spherical configuration of microphones. The
third issue is the need to separate the incident field
and the reflected field. Different methods to achieve
this are reviewed in [10], including time windowing,
subtraction and sound field separation, but inaccura-
cies can occur, especially at lower frequencies.

Scattering is a central concept in many scientific
areas, including not only acoustics but also electro-
magnetics, optics or quantum mechanics. In general,
the studied effect is volume scattering, namely the dis-
turbance caused by the introduction of an object in a
given wave field. The scattered field is defined as the
difference between the total field in the presence of the
object and the undisturbed field without the object.
In the far-field, the scattered field can be described by
a directivity function, which is uniquely defined by the
object [11]. This function appears frequently in the
scattering literature under different names, such as
far-field pattern [11], directivity factor [12] or scatter-
ing amplitude [13]. This approach to scattering, which
is common to many fields, benefits from a solid math-
ematical background.

This study proposes to characterize scattering due
to finite-sized samples by estimating their far-field
pattern under plane wave incidence. It is shown that
the far-field pattern can be estimated from near-field
measurements of pressure and particle velocity, with
no need to subtract the incident field. Finally, for sam-
ples with a rough surface, the relation between the
far-field pattern and surface scattering is examined.

The paper first reviews concepts of surface scatter-
ing and volume scattering in Sec. 2. The near-field
measurement method is then presented in Sec. 3. Sec-
tion 4 exposes numerical results and studies scattering
by different samples. Finally, Sec. 5 discusses the rel-
evance of the far-field pattern and its limitations.

2. Background of acoustic scattering

2.1. Characterization of surface scattering

The concept of surface scattering is extensively used
in geometrical acoustics. It arises from a high-
frequency model, where an incident sound wave im-
pinges on a rough surface. The properties of the sur-
face are inferred from the reflected field, which is com-
monly decomposed into a specular and a diffuse com-
ponent. Two coefficients were developed to evaluate
surface scattering, known as scattering coefficient and
diffusion coefficient. The reflected field depends on the
incident sound field, so these coefficients are defined
for specific incidence conditions, typically a free-field
oblique incidence or a diffuse field. Many measure-
ment methods (e.g. [4] or [7]) rely on the knowledge
of a discretized angular distribution of the reflected
pressure in the far-field p(θi), at n different positions.

The scattering coefficient s is defined as the ratio
of reflected energy directed away from the specular
component [3]. It is mostly used in numerical room
acoustic models. The scattering coefficient depends
on the definition of the specular component, which
is not clear for samples of finite size. In order to iso-
late the specular part, several methods rely on the
assumption that the specular and the diffuse compo-
nent are statistically uncorrelated. That is the case of
the ISO method [5] and its free-field version [3], where
the diffuse component of the reflection is averaged out
by rotating the sample. Alternatively, the correlation
scattering coefficient introduced by Mommertz [7] is
based on the correlation between p(θi) and the pres-
sure distribution pref (θi) obtained for a reference flat
sample with the same dimensions,

sM = 1−
|
∑

i p(θi)p
∗
ref (θi)|2∑

i |p(θi)|2
∑

i |pref (θi)|2
. (1)

As the comparison is made between two samples of
the same dimensions, it is claimed that the calculated
coefficient does not include the size effect.

The diffusion coefficient δ quantifies the uniformity
of the reflection, and is of interest mostly for diffuser
manufacturers and their customers. The standardized
coefficient is based on the autocorrelation of the an-
gular distribution as

δ =

(∑
i |p(θi)|2|

)2 −∑i |p(θi)|4

(n− 1)
∑

i |p(θi)|4
, (2)

assuming a uniform sampling of pressure [1].
Equations (1) and (2) show that both diffusion and

scattering can be evaluated from the far-field pres-
sure distribution p(θi). However, p(θi) is dependent on
the size of the sample, whereas the surface scattering
framework was developed for infinite surfaces. More-
over, the measurement of p(θi) must be performed in
the far-field, so it requires large distances between the
sample and the microphones.

2.2. Volume scattering theory

The problem of wave scattering by an object of fi-
nite size appears in various fields, which share a simi-
lar mathematical background. In this paper, we refer
to [11] which studies inverse scattering problems in
acoustics and electromagnetics.

Let a point be defined by its spherical coordinates
r = (r,Ω), where r is the distance to the origin and Ω
is an angular direction. We consider an undisturbed
sound field p0(r) in a medium characterized by its
speed of sound c and its density ρ. The introduction
of an object of finite size in the field leads to a new
sound field p1(r), called total field. The scattered field
pS(r) is then defined as

pS(r) = p1(r)− p0(r). (3)
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Note that while p0 and p1 exist physically, pS is a
mathematical construction.

The scattered field fulfills Sommerfeld’s radiation
condition, which makes it possible to express it in the
far-field as

pS(r) =
r→+∞

e−jkr

r

(
f∞(Ω) +O

(
1

r

))
. (4)

Equation (4) shows that the radial and the angular de-
pendence of pS can be separated in the far-field. The
radial part decays as a spherical wave, whereas the
angular part f∞(Ω) is a complex directivity function,
called far-field pattern in [11]. For a given undisturbed
sound field p0, the far-field pattern is uniquely deter-
mined by the object, and is therefore directly linked
to the scattering properties of the object. As f∞ is a
complex function, it contains more information than
the common energy directivity functions in the liter-
ature, such as in [2].

3. Methodology

We aim at following the object scattering approach
presented in Sec. 2.2 to estimate the far-field pattern
of acoustic samples. The far-field pattern is estimated
from near-field measurements of pressure and particle
velocity, using the Helmholtz integral equation. We
focus on flat samples, whose upper surfaces have dif-
fusing or absorbing properties. The measurement in-
cludes both the effects of the sample’s geometry and
the surface properties.

3.1. Helmholtz integral equation and applica-
tion

Let S be a surface enclosing the scattering object.
The Helmholtz integral equation relates the scattered
pressure at a given position r to the sound field on S.
Outside of the surface, the scattered pressure is [11]

pS(r) =

∫∫
S

(
pS(rS)

∂G(r, rS)

∂n

−∂pS(rS)

∂n
G(r, rS)

)
ds(rS), (5)

where ∂
∂n is the normal derivative with respect to the

surface S, and G is a Green’s function, solution to the
Helmholtz equation, which is assumed known analyt-
ically. If no source is enclosed by S, then Eq. (5) is
also valid when pS is replaced by the total field p1 in
the integral.

In Eq. (5), r only appears in G(r, rS). Furthermore,
assuming G is a radiating solution, it follows the same
form as Eq. (4) in the far-field,

G(r, rS) =
r→+∞

e−jkr

r

(
G∞(Ω, rS) +O

(
1

r

))
.(6)

G∞ can be understood as the far-field pattern of G for
a point source at position rS, and it can be calculated
analytically.

Consequently, the far-field pattern can be expressed
from Eq. (5) by setting r to +∞ and by using Eq.
(6). The term e−jkr

r can then be factorized, and by
identification, one obtains

f∞(Ω) =

∫∫
S

(
pS(rS)

∂G∞(Ω, rS)

∂n

−∂pS(rS)

∂n
G∞(Ω, rS)

)
ds(rS). (7)

Again, Eq. (7) is valid when p1 is used instead of pS in
the integral, provided that there are no sources inside
S. Furthermore, ∂p

∂n is related to the normal particle
velocity un through Euler’s equation, so Eq. (7) can
also be expressed as a function of the pressure and
the normal particle velocity on the surface S.

3.2. Measurement method

We make use of Eq. (7) to estimate the far-field pat-
tern of a sample. We assume that it is possible to
measure both the pressure and the normal particle
velocity on a surface S enclosing the sample at M
discrete positions rj(1 ≤ j ≤ M). Equation (7) can
be discretized to obtain a matrix equation in the form

f∞ = Ap + Bun, (8)

where p and un are vectors of size M containing the
measured pressures and particle velocities and f∞ con-
tains the estimated far-field pattern at discrete angu-
lar directions Ωi(1 ≤ i ≤ N). The matrices A and B
are calculated from Eq. (7). In this study, the integral
is approximated as a Riemann sum, where S is sub-
divided in elements of equal size δs and each element
is assigned a measurement point rj , so that

Ai,j =
∂G∞(Ωi, rj)

∂n(rj)
δs, (9)

Bi,j = jρckG∞(Ωi, rj)δs, (10)

with 1 ≤ i ≤ N and 1 ≤ j ≤ M . Other finer interpo-
lation strategies are of course possible.

So far, no assumption is made on the incident field,
apart from the fact that there is no source inside S.
This makes it possible to use either the total field or
the scattered field in the measurement vectors p and
un.

Equation (8) is a forward problem, so the far-field
pattern can be easily estimated from near-field mea-
surements and the operation is not sensitive to noise.
The proposed setup does not require large measure-
ment distances as in [2] or [4], nor the separation
between the incident and the reflected fields that is
needed in [9] or [10] for instance.
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(a) (b)

(c) (d)

Figure 1. Tested samples. (a): flat rigid surface. (b): flat
absorptive surface. (c): sinusoidal surface. (d): half-circle.

4. Numerical tests in 2D

The method presented in Sec. 3 was tested using a
Boundary Element Model (BEM) in two dimensions
[16]. Note that the equations were adapted, as radi-
ating waves in the far-field follow a cylindrical decay
e−jkr
√
r

in 2D. Geometries were discretized using the
common rule of six elements per wavelength.

4.1. Tested samples

Samples with different scattering properties are
tested, as shown in Fig. 1. For all samples, the lower
boundary is a segment of length 2m and the left and
right sides are segments of length 10 cm. The samples
have different upper boundaries, which are referred to
as surfaces in the following, namely:
(a) flat and rigid, where the specular reflection is ex-

pected to dominate;
(b) flat and absorptive, where the surface impedance

is set to ρc;
(c) sinusoidal and rigid, with an amplitude h = 1 cm

and a period Λ = 20 cm, where we expect the
energy to be redirected in specific directions;

(d) a half-circle of radius 1m, which should redirect
sound in all directions.

4.2. Simulation setup

The simulated measurement setup is shown in Fig.
2. A polar coordinate system is used r = (r, θ). The
samples are placed in a free-field, under normal inci-
dence of a plane wave with an amplitude of 1Pa. The
frequency is set to 2500 Hz, corresponding to a wave-
length λ = 14 cm. The choice of the measurement do-
main is arbitrary, but it should enclose the object. For
this example, the pressure p and the particle veloc-
ity un in Eq. (8) are measured on a rectangle slightly
larger than the sample (2.1m×0.25m for samples (a),
(b), and (c); 2.1m×1.25m for sample (d)). The dis-
tance between the sampling points must be smaller
than half of the wavelength to avoid aliasing effects,
according to the Nyquist theorem [15]. Therefore it

Figure 2. Simulation setup. The sample is placed in free-
field. The polar coordinate system r = (r, θ) is also shown.
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Figure 3. Amplitude in Pa of the pressure and the nor-
malized normal particle velocity for the total field and the
scattered field.

is set to 5 cm. Note that the discretization of Eq. (7)
depends on the choice of the domain as well as the in-
terpolation. The estimated far-field pattern f∞ in Eq.
(8) is sampled with a resolution of 0.5°.

The BEM method also makes it possible to directly
estimate the far-field pattern for reference: the scat-
tered pressure is calculated on a circle of a large radius
(200m) and the radial dependence e−jkr

√
r

is compen-
sated for.

4.3. Far-field pattern estimation

In this section, we focus on the results for test sample
(a) as similar observations could be done for the other
samples. Figure 3 shows the amplitude of the pressure
and the normal particle velocity at the measurement
points, both for the total and the scattered fields. The
particle velocity has been multiplied by ρc so that it
has the dimension of a pressure. For the total field,
both the pressure and the particle velocity have low
amplitudes below the sample, which shows that the
object shadows the sound field in this region. On the
upper part of the measurement domain, the total field
is the result of the interference between the incident
and the reflected wave, with low pressure and high
particle velocity. Indeed, the distance between the up-
per surface of the sample and the measurement points
is 10 cm, which is quite close to 3

4λ, where the pressure
would be canceled and the velocity amplitude maxi-
mal with an infinite rigid sample. With respect to Eq.
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(7), the distribution of the total field indicates that,
for such a large sample and at normal incidence, the
far-field pattern does not depend much on the sound
field below the sample. As for the scattered field, it
is by definition the difference between the total field
and the undisturbed field. In Fig. 3, both the scattered
pressure and normal particle velocity present low am-
plitudes on the sides, which shows that the sample
has little influence in these regions.

Figure 4 shows the estimated amplitude of the far-
field pattern of the flat rigid sample as a function of θ,
compared with the reference directly calculated in the
BEM model. The far-field pattern is very accurately
estimated from the near-field measurements, both for
the scattered field and the total field as inputs, even
with the rather coarse interpolation used to discretize
Eq. (7). This is due to the forward nature of the prob-
lem. Results not shown here confirm that the same
level of accuracy is also obtained for other shapes of
the measurement domain.

4.4. Comparison of the far-field patterns

The far-field patterns of the tested samples are plot-
ted in Fig. 5. These results are specific to the undis-
turbed field p0, which corresponds to a plane wave at
normal incidence in free-field. The graph can be di-
vided into two angular domains, materialized by the
vertical black dashed line.

The interval θ ∈ [0°; 180°] corresponds to backscat-
tering and contains the reflection by the upper sur-
face. It clearly shows the expected behavior of the
samples, with respect to surface scattering. For the
flat rigid surface, a main lobe appears in the specular
direction at 90°, with side lobes due to edge diffrac-
tion. For the absorptive surface, the amplitude is very
close to 0, as almost no energy is reflected back. For
the sinusoidal surface, three main directions are visi-
ble. These directions agree with the theory for infinite
sinusoidal surfaces [14], which states that the sound
field is radiated in distinct directions θn. These direc-
tions fulfill the equality

cos(θn) = cos(θ0) + n
λ

Λ
, (11)

where θ0 corresponds to the specular direction – 90°
in this case. These directions are indicated by dot-
ted vertical lines in Fig. 5. Finally, for the half-circle,
the amplitude of the far-field pattern is quite con-
stant, which shows that the reflected field is evenly
distributed.

The interval θ ∈ [180°; 360°] corresponds to forward
scattering and mainly shows the shadowing of the
sound field by the object. Note that in the present
tests, the shadowing effect is similar for all samples,
due to their same overall dimensions. The half-circle
result has similar main lobes to the three other sam-
ples close to 270°, but the sample’s larger thickness
results in marked differences on the sides.

Table I. Estimated correlation scattering coefficient sM
and diffusion coefficient δ from the backscattered part of
the far-field pattern.

Samples Flat Absorptive Sinsusoidal Half-circle

sM 0 0.999 0.294 0.978
δ 0.015 0.306 0.042 0.492

4.5. Calculation of coefficients from the far-
field pattern

By definition, the far-field pattern is directly linked to
the directional properties of the scattered field. More
precisely, in a free-field configuration, the backscat-
tered part of the far-field pattern (θ < 180°) repre-
sents the angular distribution of the reflection by the
tested surfaces. Therefore it can be used as the far-
field pressure distribution that appears in Eqs. (1) and
(2).

As an example, the correlation scattering coefficient
and the diffusion coefficient defined in Sec. 2 were cal-
culated for the studied samples in Table I. For the
correlation scattering coefficient, the reference sample
is the flat rigid one, which explains why that sample
yields a value of 0. The scattering coefficient of the
absorptive sample is almost equal to 1, due to the sig-
nificant difference between its far-field pattern and the
reference’s. Note that as there is almost no reflection,
the definition of the scattering coefficient as a ratio
of the reflected power does not really apply here. The
sinusoidal surface leads to a coefficient of about 0.3,
due to the redirection of energy in a few specific di-
rections. The half-circle yields a correlation scattering
coefficient of almost 1, as expected by the amount of
energy radiated in all directions and the considerably
lower amplitude in the specular direction.

As for the diffusion coefficient, the lowest value is
obtained for the flat rigid sample, for which the re-
flected energy is concentrated around the specular di-
rection. The diffusion coefficient of the sinusoidal sur-
face is still rather low, as the reflected field is not uni-
form. Both the absorptive sample and the half-circle
show a higher value as their angular response is flat-
ter.

These examples show that the far-field pattern con-
stitutes valid information for estimating known coef-
ficients from the surface scattering literature, if it is
restricted to backscattering only. For the present ex-
amples, it was not possible to follow sample rotations
methods, as they require measurements in 3D.

4.6. Angle dependence

This section investigates the influence of the angle of
incidence on the far-field pattern for the sinusoidal
sample (b). The far-field pattern is plotted for inci-
dence angles 0°, 30°and 60° in Fig. 6. As in Sec. 4.4,
the graphs can be divided into a backscattering part
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Figure 4. Estimated amplitude of the far-field pattern for the flat rigid sample. The estimation is done from the scattered
field and the total field and compared with a reference calculated at 200m.
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Figure 5. Comparison of the far-field pattern amplitudes of the tested samples: flat rigid, flat absorptive, sinusoidal,
half-circle.

(θ ≤ 180°) and a forward scattering part (θ ≥ 180°).
The expected directions of the backscattered sound
field from Eq. (11) are shown as dashed lines, the
thickest one corresponding to the specular direction.
For the three incidence angles, peaks appear at these
directions. In the three graphs, the forward scatter-
ing part presents only one main peak corresponding
to the direction of propagation of the incident wave.

The lobes of the far-field pattern tend to be smeared
as the angle of incidence increases. This effect is partly
due to the fact that at grazing incidence, the backscat-
tered sound is also influenced by the sound field below
the sample. At large angles of incidence, backscatter-
ing and forward scattering are no longer independent.

4.7. Dependence on the environment

In the previous tests, the samples were placed in a
free-field. The introduction of boundary conditions in
the environment modifies the undisturbed sound field

p0. As a result, the scattered field and the correspond-
ing far-field pattern are not the same as in free-field.
For instance, the sample can be placed on a rigid baf-
fle (semi-anechoic chamber) which is common in the
literature [10]. In that case, at normal incidence, the
undisturbed field p0 is a standing wave, composed of
the incident plane wave and its specular reflection by
the baffle. It is still possible to define a radiating scat-
tered field and a far-field pattern.

Figure 7 shows the resulting far-field patterns for
the samples studied in Sec. 4 on an infinite rigid baf-
fle. Note that the angle θ is only defined from 0 to
180°. The effects of the different surfaces are still vis-
ible. The flat rigid sample exhibits a main lobe in the
specular direction. The absorptive sample leads to a
reduced amplitude of the far-field pattern. As opposed
to the free-field case, it is not close to 0, because the
scattered field interferes destructively with the reflec-
tion by the baffle. For the sinusoidal sample, peaks in
the three expected directions are again visible . Fi-
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Figure 6. Far-field pattern amplitude for the sinusoidal
surface and a plane wave with incidence angles 0°, 30°and
60°

nally, the half-circle shows oscillations at all angles,
and the uniformity of the reflection is much less obvi-
ous than in the free-field case.

It should be noted that in this semi-anechoic setup,
one cannot describe the reflected field as easily as in
free-field. The reflected field is here the sum of the
scattered field and the specular reflection by the baf-
fle, which is not decaying with distance. Therefore,
the far-field pattern does not represent the reflection
as clearly as in the free-field case.

5. Discussion

The results of Sec. 4 show that the proposed method
makes it possible to accurately estimate the far-field
pattern of acoustic samples. The method does not re-
quire large measurement distances nor any processing
on the measured sound field, as opposed to the exist-
ing techniques to characterize surface scattering.

The far-field pattern depends on the incident sound
field, as stated in Sec. 2. That is what motivated the
choice of an incident plane wave in the tests: the in-
cident field is then defined by only one parameter,
namely the direction of the plane wave. With that
framework, we have information that is dependent on
both incidence angle and frequency, as it is gener-
ally the case in architectural acoustics. Random inci-
dence could then be studied by integration over the
incidence angle. Nevertheless, a different far-field pat-
tern would be obtained with a more complex incident
sound field.

The far-field pattern provides a complete descrip-
tion of scattering by acoustic samples, including not

only surface scattering, but also edge diffraction and
shadowing. The fact that it includes the size effect can
be of interest in architectural acoustics, as any object
introduced in an environment would naturally have
a certain geometry. Nevertheless, it is not possible to
totally separate surface scattering from other effects
in the far-field pattern. In the conditions of Sec. 4
(large samples, small incidence angles, free-field), the
backscattered field constitutes a fair approximation of
the reflected field by the surface, although the effect
of sample size is still clearly visible as lobes in the
far-field pattern.

Furthermore, it was assumed that the backscattered
part did not depend on the sound field below the sam-
ple, which is not always true, for instance at large
incidence angles. In the literature, the sample is com-
monly placed on or in a baffle (absorbing or rigid),
to ensure that the back of the sample does not play
any role on the scattered field. However, the baffled
problem is fundamentally different from the free-field
one and it cannot be used to study surface scattering
directly. Further investigation is therefore needed to
analyze scattering in complex environments.

6. Conclusion

This study examines the characterization of scatter-
ing by acoustic samples, using the concept of far-field
pattern. This quantity is a complex directivity func-
tion that is uniquely defined by the sample and the
incident field.

Numerical tests in two dimensions show that the
far-field pattern can be accurately estimated from
near-field measurements of both pressure and particle
velocity, using either the total field or the scattered
field. Samples with different surface properties were
also studied in free-field under normal plane wave in-
cidence. Numerical results show that the far-field pat-
tern contains information on both surface scattering
and edge diffraction in the backscattered directions.
Surface scattering dominates due to the large size of
the samples and the small incidence angle. In general,
more important coupling effects occur, for example at
larger angles of incidence. Finally, the same samples
positioned on an infinite baffle yield different results,
demonstrating the dependence of the far-field pattern
on the environment.

The far-field pattern can be beneficial in architec-
tural acoustics as it fully describes the effect of acous-
tic samples, including both scattering and absorption.
It provides phase and directional information on the
scattered sound field, which can be of interest in nu-
merical models.
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