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Summary

Edge-diffraction based modeling, in the form of the Edge Source Integral Equation (ESIE), [J. Acoust.
Soc. Am. 133, pp. 3681-3691, 2013|, has proven efficient and accurate for radiation problems such as
modeling loudspeakers in convex-shaped rigid enclosures. Some singularity issues have been identified
for certain source/receiver positions, and the problem as regards receiver positions can be avoided
through a recently suggested hybrid technique [Proc. Meet. of Acoustics. 26, 015001, 2016]. The
hybrid technique uses the edge-diffraction formulation to find the sound pressure at the surface
of the scatterer, and employs the Kirchhoff-Helmholtz Integral Equation to propagate the surface
sound pressure to external receiver points. For these techniques mentioned above, computed results
are assumed to converge towards a correct result, and one usually has to use the finest mesh that
is computable with the available resources. Such a single computation does, however, not directly
indicate the accuracy of the result, but by employing computations for several mesh sizes, a Taylor
expansion model of the computation error can offer the possibility for a Richardson extrapolation as
a convergence acceleration technique. This technique is well-known for some computation techniques
but possibly not so widely known. Here, this technique will be demonstrated for some particularly
challenging cases of computing far-field backscattering at low frequencies from compact scatterers
with the ESIE method, as well as some other challenging geometries. Pronounced cancellation effects
between first- and higher-order diffraction components lead to very high accuracy requirements for
the computations, and convergence acceleration turns out to be highly effective. [Portions of this
material are based upon work supported by the Office of Naval Research under Contract No. N68335-
17-C-0336; the Research Council of Norway, project no. 240278; and the ERCIM Alain Bensoussan
Fellowship Programme].
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which requires a discretization of the scattering body
surface only. In this paper, an alternative approach

1. Introduction

Scattering problems can be studied with a variety
of techniques, including analytical solutions and nu-
merical computation. The former exist only for a
few canonical shapes, so numerical approaches typ-
ically must be used. These can be based on solving
the wave equation, or using finite-element or finite-
difference methods. For external scattering problems,
such volume-element based methods might require
large computational efforts due to the required do-
main discretization. A common alternative is the
boundary element method (BEM), which is based
on the Kirchhoff-Helmholtz integral equation (KHIE),
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is investigated: the decomposition of the scattered
sound field into geometrical acoustics (GA) compo-
nents and diffraction components of different orders.
Such a decomposition can be made exact for a single
infinite wedge by employing an exact diffraction ex-
pression. High-frequency asymptotic solutions such as
the GTD or UTD are also commonly used, both for
a single wedge, and for polyhedral bodies. Here, the
edge source integral equation (ESIE) will be used for
the modeling of higher-order diffraction. This model
does not have the asymptotic limitations that GTD
and UTD have, but it is also not clear how the solu-
tion relates to the true solution of the wave equation.
The ESIE has been shown to give remarkably accurate
results for the scattering from convex shaped bodies
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Figure 1. Illustration of the decomposition of the sound
field into components: (a) Direct sound, (b) Specular
reflection, (c) First-order diffraction, (d) Second-order
diffraction

with rigid surfaces (the Neumann boundary condi-
tion). In this paper, the special case of back-scattering
for low wavenumbers will be explored further since it
is a numerically very challenging use for diffraction-
based approaches.

2. Methods

2.1. Theory

The diffraction based approach decomposes the sound
pressure at a receiver, piotal, as

Ptotal = PGA + P1. order diffraction T PHOD (1)

where pga represents the geometrical acoustics solu-
tion, that is, the direct sound + the specular reflec-
tion, and HOD stands for higher-order diffraction. It
should be noted that the two GA components are both
subject to visibility tests, which implies that a re-
ceiver behind a scattering object would have pga = 0.
The diffraction terms of various orders are, as a con-
sequence, also subject to visibility tests, so that the
total sound field, pgotal, is continuous everywhere. In
Eq. (1), the grouping into first-order diffraction, and
the accumulation of second-and-higher order diffrac-
tion, respectively, is a property of the ESIE. See Fig.
1 for an illustration of some of these terms.

2.2. Numerical implementation

The three terms in Eq. (1) are computed with dif-
ferent approaches. The GA components are available
explicitly, with the direct sound on the form

e—jk‘r

Pdirect = VS,R (2)

r

where k is the wavenumber, r is the distance from
source to receiver, and Vg R is a visibility factor, be-
ing 1 if the line from S to R is unobstructed, 0 if the

line obstructed, and 0.5 if the line is exactly hitting
one edge. It could be pointed out that the expression
in Eq. (2) is not exactly a sound pressure but rather a
transfer function from a monopole source signal to the
sound pressure at the receiver. The first-order diffrac-
tion is computed via numerical integration of integrals
on the form given in [1]. Such an integration is carried
out for each edge which is visible from the source and
the receiver. In the example in Fig. 1(c), only the four
edges of the top surface of the box are visible from the
source and the receiver. The numerical integration is
done using Matlab’s QUADGK function, with the addi-
tion of a series expansion of the integrand around the
singular apex point, using a frequency-domain version
of the method in [2]. Thus, the first-order diffraction
term can be computed with a high accuracy at a rea-
sonable computational cost. Finally, for the computa-
tion of the higher-order diffraction (HOD) term, an
integral equation on a matrix form must be solved,
as described in [3]. The integral equation, called the
edge source integral equation, or ESIE, gives a set
of edge source amplitudes, and from these, a propa-
gated sound pressure can be computed at any external
reveiver position. The integral equation, given in [3],
is a Fredholm equation of the second kind, which can
be solved with the Nystrom, or quadrature, method.
An iterative method is used (the Neumann series ap-
proach), since a very large, sparse matrix needs to
be inverted. The accuracy of the HOD-term depends
on the quadrature order used, called "edge points" or
"Gauss points", ngauss, per edge in the following. The
computation time for ppop depends on ngauss and
therefore approaches to keep the ngauss low are very
attractive.

2.3. An illustrative example

One numerical challenge of the ESIE approach can be
illustrated by a back-scatter example. A source and
receiver were co-located at a distance of 10 m sym-
metrically above a square, thin plate of size 1m by
1m, in air with ¢ = 344 m/s. The direct sound was
left out here. Fig. 2 shows the resulting frequency re-
sponse, illustrating the typical high-pass response for
the reflection from a finite reflector. Also shown are
the responses when only the specular reflection is in-
cluded, and when first-order diffraction is included.
It can be observed that first-order diffraction seems
to suffice for medium-to-higher frequencies, whereas
higher-order diffraction is absolutely necessary for
lower frequencies. Furthermore, it can be seen that
the quadrature order (ng, for ngauss) per edge, for
the higher-order diffraction seems to have a great im-
pact for the very lowest frequencies, but much less
so for slightly higher frequencies (above 10 Hz). It
might seem surprising that the numerical accuracy of
the HOD calculations has the strongest impact at the
lowest frequencies, but it is a typical demonstration
of loss of significance. The total field is a sum of three
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Figure 2. Back-scatter for a thin, rigid plate, Im by 1m,
from a distance of 10m.

terms, see Eq. (1), and the magnitude of this sum
is much smaller than the magnitude of the three in-
volved terms. As a consequence, the relative error of
the sum is much larger than the relative error of the
three terms independently. The first two terms (pga
and pgifir.1, respectively) are computed with very high
accuracy, so it is the relative error of the third term,
pHOD, that dominates, and this term must be com-
puted with higher and higher accuracy, the lower the
frequency. Exactly that numerical challenge is a main
topic of this paper, so in the results section, only re-
sults for those very low frequencies will be displayed.

2.4. Challenges for the ESIE method

As argued above, the required accuracy for the com-
putation of pyop generally increases, the weaker the
total field magnitude is. In addition, the calculation
of pgop has challenges for certain source and receiver
directions, [4], as well as for smooth scattering bodies
that are represented as polyhedra. The challenge is
that the kernel in the integral equation has a singu-
larity for source/receiver directions that are very close
to one of the infinite planes that the scatterer faces
belong to. Fig. 3 illustrates these challenging direc-
tions for a cube-shape scatterer. Only one quadrant
of the full space is shown, because of symmetry. The
red arcs indicate source/receiver directions where the
kernel directivity singularity is encountered. Regard-
less of source position, receivers close to those red arcs
will encounter very slow convergence of the results for
PHOD-

2.4.1. Mitigation technique 1: Richardson extrapola-

tion
For a numerical method that depends on some dis-
cretization with n points, a Taylor expansion model
can be employed, assuming that the computed result

Figure 3. One octant of a spherical surface around
a cube-shaped scattering object. The red arcs indi-
cate source/receiver directions for which the higher-order
diffraction integral kernel gets singular.

with n points, p,, is the final sought result, pgnal, plus
some polynomial form for the error,

1 B
ﬁn :pﬁna1+A () + ...
n

where the leading exponent B is either known from
the method’s numerical properties, or empirically de-
rived. The unknowns, including the one of most in-
terest, panal, can be estimated based on a few com-
puted values with different discretizations, assuming
that those computations are in a range where the lead-
ing term is dominating the error. It has been demon-
strated that the ESIE method used here, where a
Gauss-Legendre quadrature approach is used, leads
to B = 2 (except close to the challenging receiver
positions shown in Fig. 3) . Thus, the potential ex-
ponential convergence for Gaussian quadrature is not
fulfilled, since the integral kernel has endpoint sin-
gularities that limit the convergence. By plotting the
computed values, p,, against x,, = ng_a2uss, the constant
parameter (p-intercept) of a linear regression will be
the estimate of pgnai. Such extrapolated values can
be found from different sets of computed datapoints,
and these extrapolated values can in turn be used for
another round of extrapolation, with a higher coeffi-
cient B for the error term. Here, only a first round of
extrapolation will be demonstrated.

2.4.2. Mitigation technique 2: Combining the ESIE
with the BEM

It has recently been suggested that the numerical
problems with the ESIE for certain receiver posi-
tions can be avoided by combining the ESTE with the
Helmholtz integral, in the same was as the bound-
ary element method (BEM) uses the latter, [5]. Thus,
the ESIE is used to compute the sound pressure at
intermediate receiver positions across the surface of
the scattering body. In a subsequent step, this surface
sound pressure is propagated to an external receiver
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Figure 4. Three scattering objects: (a) Cube, (b) Octahe-
dron, (c) Icosahedron

position, P (leaving out the direct sound, since we are
interested in the backscatter case here),

1 eIk 1 1
p(P) = 4 | Pewt— jk 4+ — ) cospdS
7r r r
computed numerically as

Stotal al —ikr 1
p(P)~ ——— Zwipsurf,ii (jk + r) Ccos ¢

e
4 < r
1=1

for the N intermediate surface receiver positions
where the surface sound pressure has been com-
puted with the ESIE. Here, a Gauss-Legendre quadra-
ture product rule is used for quadrilateral faces, and
quadrature rules from [6] for triangular faces, of the
scattering polyhedron. Siosa is the total surface area
of the scattering body.

3. Examples

Three different scattering bodies are studied here,
a cube, an octahedron, and a regular icosahedron,
as illustrated in Fig. 4. They are scaled to the
same volume, 1 m®. A source and a receiver are co-
located at a distance of 1000 m, for a few different
source/receiver angles, so monostatic backscattering
is studied here. For the cube example, Fig. 5(a) illus-
trates four source/receiver positions by crosses and
labels R;. The position R; is unproblematic, being
far away from the polyhedron/cube planes, whereas
positions Ry to R4 are close to one or two of those
planes. Note that the distance to the scattering object
is 1000 m here, which makes the two parallel planes
that are visible in Fig. 3 collapse into one. Figs. 5(b)
and (c) show corresponding challenging directions for
the octahedral and icosahedral scatterers as well.
The monostatic backscatter amplitude was com-
puted for the two frequencies 1 Hz and 10 Hz, with a
speed of sound of 344 m/s. Three different diffraction-
based methods were used: the basic ESIE with dif-
ferent values of ngquss per edge, extrapolated ESIE
(see section 2.4.1), and ESIEBEM (see section 2.4.2),
with 5*5 quadrature points per cube face, following a
product Gauss-Legendre rule, or 7 quadrature points

y | R v
%, # 8 X, g

Figure 5. Four source/receiver positions for the (a) cube,
(b) octahedral, and (c) icosahedral scatterers. Positions
where the diffraction integral kernel is singular are indi-
cated by the red arcs.

per triangular face for the octahedron and icosahe-
dron scatterers. The Matlab EDtoolbox was used for
all these calculations, [7]. Reference results were also
computed with the OpenBEM Matlab software [§],
using meshes generated with the gmsh software, [10].
Those reference meshes have 17972, 16920, and 15318
nodes, respectively, for the three scatterers in Fig. 4.

4. Results

Figs. 6 and 7 show the backscatter magnitude for the
cube scatterer, for the frequency 1 Hz (kL = 0.018),
as function of number of gauss points per edge, for
the two receiver positions 1 and 4. The results in Fig.
6 indicate that the extrapolated results based on the
ESIE method converge quite well to the same values
as the ESIEBEM and BEM results, but the ESIEBEM
results need remarkably low numbers of gauss points,
and a surface quadrature order of 5*5 per cube face
seems to suffice for this low frequency. The ESIE re-
sults might seem to be very problematic since a con-
vergence towards the reference BEM result can not
be observed. However, for even higher values of gauss
points per edge, the ESIE result do indeed tend to-
wards the correct result. The large deviation is caused
by the fact that the ESIE result passes through the
origin, the value 0, in the complex plane, on its conver-
gence trajectory towards the right result (not shown).
Interestingly, the extrapolation detects such a trajec-
tory and easily finds an accurate estimate of the fi-
nal convergence value. By inspecting the results for
the same source/receiver, but the frequency 10 Hz,
in Fig. 8, one can observe perfectly expected conver-
gence patterns. Please note the very different scales
in Figs 6-fig.uberes4.

The more problematic receiver R4 leads to prob-
lems for the ESIE method, as seen in Fig. 7, and the
results seem to converge very slowly towards the re-
sults of the ESIEBEM and BEM. Again, it seems like
the ESIEBEM approach is much more robust and ef-
ficient. Also shown in Figs. 6 and 7 are the theoretical
low-frequency values for the backscatter from a rigid,
spherical scatterer,

5(ka)? - a
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Figure 6. Backscatter amplitude for the cube scatterer at
1 Hz, as function of gauss points per edge for the unprob-
lematic receiver R;.
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Figure 7. Backscatter amplitude for the cube scatterer at
1 Hz, as function of gauss points per edge for the prob-
lematic receiver Ry.

where a is the radius, and k is the wavenumber, [10].
For the polyhedral scatterers, we use an effective ra-
dius value, a, for which the sphere of that radius gets
the same volume as the polyhedral object.

For both the octahedral and the icosahedral scat-
tering objects in Fig. 4 (b) and (c), results follow the
same trends as in Figs. 6 and 7. All results are com-
piled in the next subsection.

4.1. Compiled results

In Table I, the results for the ESIE method are com-
piled for the two frequencies, and all three scatterer
bodies. Results have been divided into two types of
receivers: unproblematic ones and problematic ones.
The extrapolated ESIE results are presented in Table
II. Some quite clear trends can be observed. First,
the basic ESIE method has big problems for cer-
tain problematic receiver positions, as demonstrated

Figure 8. Backscatter amplitude for the cube scatterer at
10 Hz, as function of gauss points per edge for the unprob-
lematic receiver R.

by the huge errors in the lower half of Table I. Sec-
ond, the basic ESIE method also has problems for the
non-problematic receivers, for the lowest frequency,
as seen in the upper half of Table I. The reason for
the challenge at low frequencies was demonstrated in
Fig. 2. The extrapolation technique seems to acceler-
ate the convergence of the ESIE method, as intended,
but there are limits to how well the extrapolation can
perform. In the upper half of Table II, very good accu-
racy results for the non-problematic receivers. For the
problematic receivers, some improvement can be ob-
served, but it is apparantly not enough to give useful
results.

The ESTEBEM method has no challenging receiver
directions, even though source directions near the
dangerous directions in Fig. 5 will cause slower con-
vergence for the ESIEBEM method as well. Table
IIT gives the errors for the ESIEBEM method, for
the source/receiver positions with the largest er-
rors. Apparantly, good accuracy is maintained for all
three scatterer bodies, both frequencies, and all four
source/receiver directions.

4.2. Backscatter of polyhedra vs. sphere

The backscatter values, computed with the robust ES-
IEBEM method, are compared with the theoretical
value for a spherical scatterer in Fig. 9. Apparantly,
the icosahedral scatterer response is closer to the the-
oretical sphere response, than the cube response is, as
expected.

5. CONCLUSIONS

Some of the most challenging examples for edge-
diffraction based scattering modeling have been stud-
ied here: low-frequency backscatter from polyhedral
bodies. Using BEM results as reference, it has been
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Table I. Final results, for the highest number of gauss
points ped edge (80), for the ESIE method, worst
source/receiver position. Values are deviations in dB from
reference BEM results. Values in parentheses have appa-
rantly not converged to usefully accurate values.

ESIE method 1 Hz 10 Hz
Non-problematic receivers

Cube (5.2 dB) 0.06 dB
Octahedron (3.3dB) 0.17 dB
Icosahedron (7.6 dB) 0.28 dB

Problematic receivers

Cube (38.0 dB) (5.1 dB)
Octahedron (37.0 dB) (3.2 dB)
Icosahedron (66.3 dB) (26.8 dB)

Table II. Results for extrapolations of the ESIE results.
Values are deviations in dB from reference BEM results.
Values in parentheses have apparantly not converged to
usefully accurate values.

ESIE extrapolation 1 Hz 10 Hz
Non-problematic receivers
Cube 0.05 dB 0.01 dB
Octahedron 0.17 dB 0.04 dB
Icosahedron 0.18 dB 0.01 dB
Problematic receivers
Cube (4.2 dB) 0.07 dB
Octahedron (33.4 dB) (1.3 dB)
Icosahedron (38.5 dB) (5.5 dB)

Table III. Final results for the ESIEBEM method, for the
worst source /receiver position. Values are deviations in dB
from reference BEM results.

ESIEBEM 1 Hz 10 Hz

Cube 0.28 dB 0.10 dB
Octahedron 0.05 dB 0.07 dB
Icosahedron 0.24 dB 0.07 dB

confirmed that the basic ESTE method has some chal-
lenges with these examples. The problems are both
caused by some challenging source/receiver positions
and because of extreme accuracy requirements for the
computation of higher-order diffraction at very low
frequencies. The extrapolation of ESIE results has
been demonstrated to lead to significant improvement
in accuracy, but does not help for challenging receiver
directions. The ESTEBEM method, on the other hand,
seems to avoid both the challenging receiver direc-
tions and the extreme accuracy requirements at low
frequencies.
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Figure 9. Backscatter amplitude for the three scatterers,
as computed with the ESIEBEM method, compared with
the theoretical LF response of a spherical scatterer.
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