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Summary
Background speech in open-plan offices causes frequently high distraction and dissatisfaction. Par-
ticularly the short-term memory is impaired by irrelevant speech sounds. A good acoustical design is
required to achieve acceptable acoustical privacy in open-plan offices. In addition to sound absorbers
and sound screens, sound masking is an efficient measure to control the background noise level and
to mask disturbing speech sounds. The existing algorithmic approaches to estimate the performance
impairment when people are subjected to irrelevant background speech require considerable com-
putational effort. A simple model is presented to predict the short-term memory performance in
distracting background speech. The results of various laboratory experiments with masked speech
sounds at both, low and high speech intelligibility, were considered. The fitted model can be used to
optimise the design of open-plan offices and to predict the effectiveness of a masking sound.

PACS no. 43.55.Hy, 43.66.Dc, 43.72.Dv, 43.50.Fe, 43.66.Ba

1. Introduction

As of today, the acoustical design of open-plan of-
fices remains challenging because it requires suffi-
cient treatment of two conflicting aims, maintain-
ing a sound environment that enables conversations
over short distances but providing acoustical privacy
that enables workers to concentrate at work at the
same time. By means of current room acoustic sim-
ulation tools acoustical consultants can predict the
effect of different acoustical products in open-plan of-
fices on various acoustical parameters. The interna-
tional standard ISO 3382-3 [1] suggests the use of
reverberation time, spatial decay of sound pressure
level (SPL) and parameters that are based on Speech
Transmission Index (STI) to evaluate the acoustical
design of open-plan offices. Recently, Haapakangas et
al. [2] have shown that STI correlates with noise dis-
turbance in open-plan offices. More than ten years
ago, Hongisto [3] presented a model that predicts the
impact of distracting background speech on work per-
formance.

(c) European Acoustics Association

It is well known that auditory background with
changing-state features deteriorates working memory
performance. This effect of auditory distraction is
especially pronounced in memory for order of visu-
ally or auditorily presented digits. The auditory dis-
traction due to irrelevant background noise is known
as Irrelevant Sound Effect [4]. Performance decre-
ments occur when the required cognitive processes
conflict with those that are involved in processing
the auditory stimuli, known as the interference-by-
process principle [5, 6]. According to this explanation,
any sound with sufficient temporal-spectral variabil-
ity is expected to deteriorate the serial memory. Re-
cent findings suggest that spectral fluctuations affect
short-term memory more than level changes [7]. For
an overview of recent studies in this field see e.g. [8].

Testing the mean error rates of subjects in a
digit span task in laboratory conditions is a well-
established method to determine the auditory dis-
traction by background sounds. Also more complex
tasks like proofreading [9, 10], reading comprehen-
sion [11, 12], and mental arithmetic [13, 14] are dis-
rupted by irrelevant noise. Showing performance ef-
fects in field studies is challenging because either only
self-reported performance in the current state is anal-
ysed (e.g. [15]) or the acoustical conditions need to be
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carefully varied while no other essential changes take
place (e.g. varying the artificial masking sound [16]).
The results of field studies that analyse the subjective
responses of office workers before and after a renova-
tion may be distorted by other effects than acoustical
changes. Hence, it seemed reasonable to limit the fur-
ther analysis of the effect of distracting background
speech on working memory performance to results ob-
tained in laboratory experiments at the first.

The mentioned model [3] predicts the decrease of
performance (DP) due to speech of varying intelli-
gibility. The model was based on three experimen-
tal studies that measured the performance in num-
ber recall and proofreading, respectively. Additionally,
one field study was included that analysed the self-
reported daily waste of working time before and after
an office relocation. Since its introduction in 2005, this
model has been applied to the acoustical design and
evaluation of open-plan offices (e.g. [1]). Various re-
searchers (e.g. [17, 18]) have reviewed this model com-
ing to different conclusions. The first study [17] tested
the performance in five tasks during sound conditions
with three different STI values (0.10, 0.35, and 0.65).
There were no significant performance differences be-
tween the two lowest STI values indicating that the
cognitive performance may start to deteriorate at STI
values higher than 0.2, as suggested by Hongisto [3].
The latter study [18] tested the performance in four
tasks during six acoustic conditions and concluded
that the steepest slope of overall performance decrease
occurred between STI values of 0.23 and 0.34 while
the differences between 0.34 and 0.71 were negligible.
The results also indicate that the performance curve
varies between different cognitive tasks. The results
of these two studies are inconsistent suggesting that
there are some uncertainties involved in the determi-
nation of STI and its correlation with cognitive per-
formance. Limiting the model to results with the same
experimental design (e.g. monaural speech recording
with masking sound) and task (e.g. digit span) would
have reduced the scope of application but may have
provided more consistent results.

From a practical point of view, it is difficult to
measure or simulate the STI because the occurring
background noise levels during a usual workday are
often unknown and the STI is not defined for situa-
tions with fluctuating background noise levels. When
multiple persons speak at different locations, the dis-
tracting impact of background speech is sustained
[19, 20]. However, Hongisto’s model [3] cannot account
for multi-talker environments. As the model was fit-
ted to data that contained one talker under steady-
state background noise, the STI was able to predict
the speech intelligibility. One may assume that this
DP model estimates the disturbing impact of speech
intelligibility but not of temporal-spectral variability.
The STI does not model temporal-spectral variabil-
ity, and hence cannot account for aspects like differ-

ent speech tempo and intonation or fluctuating back-
ground noise, for instance, when background babble
is present. Since temporal-spectral variability is ex-
pected to correlate with speech intelligibility in sound
conditions with one talker under steady-state back-
ground noise, the model correlated well with the DP.

In contrast to Finland’s National Building Code
that sets STI limits, German standards such as VDI
2569 [21] or DIN 45645-2 [22] avoid the use of the
STI. The noise rating level Lr represents the statu-
tory basis for the assessment of office noise in office
buildings in Germany, Austria and Switzerland. The
aim of this study was to extend the SPL measure-
ments in an occupied office to a new metric that cor-
relates with the work performance. Hence, this paper
presents a new approach to predict the cognitive per-
formance in distracting background speech. By using
global level statistics the SPLs of fluctuating speech
sounds and rather stationary background noise are
estimated. Subtracting these two levels provides a ra-
tio of the estimated SPL of fluctuating sounds to
stationary sounds at the receiver position and may
enable a DP prediction. Using global level statistics
seemed appropriate because both, the signal-to-noise
ratio (SNR) and temporal-spectral variability, can be
considered to a certain extent. Contrary to Hongisto’s
model [3], this model does not require a loudspeaker to
simulate a speech source, and hence it can be applied
in occupied open-plan offices. It can also consider
multi-talker sound environments. The overall sound
condition is analysed at receiver points.

The model was fitted with data points that con-
tained one speech sound similar to Hongisto’s ap-
proach [3]. Only short-term memory performance was
considered as response variable and the DP was nor-
malised to the maximum DP during clear speech to
compensate differences in the mean working memory
capacity between different subject groups. Kaarlela-
Tuomaala et al. [23] analysed similar level statistics
in a study that compared the subjective perception
of an acoustic environment during a relocation from
private office rooms to an open-plan office and con-
cluded that the variability of SPL was not related to
the self-rated disturbance caused by noise. However,
the study measured only two percentile levels LA,1%

and LA,99% and did not distinguish between speech
from the person working at the workplace and back-
ground speech from colleagues.

This paper provides first a description of the used
studies and the procedure (see Section 2). In Section 3
six model fits with different percentile level metrics
are compared. This is followed by a validation that
analyses the prediction quality of the suggested mod-
els. In the concluding Section 4, the potentials and
shortcomings of the presented model are outlined.
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2. Methods and materials

2.1. Sound conditions

Five experimental studies were considered. The first
dataset consisted of twelve sound conditions testing
the effect of steady-state noise and reversed speech
maskers at SNRs between –12 and –3 dB [24]. The sec-
ond study was based on two laboratory experiments
with twelve and ten sound conditions that evaluated
the effect of babble as compared to stationary masking
sounds at SNRs between –12 and –3 dB [25]. The third
dataset included eight sound conditions with distract-
ing speech at different SNRs of –6, –3 and 0 dB, as
well as steady-state and variable speech-like noise [26].
The fourth study analysed the effect of two different
ventilation sounds on cognitive performance at differ-
ent SPLs between 25 and 45 dB(A) with and with-
out distracting speech background, covering twelve
sound conditions in total [27]. The last study analysed
the effect of ten different masking sounds at –2.5 dB
SNR on cognitive performance aside from two con-
trol conditions with silence and clear speech [28]. One
sound condition was excluded from the further anal-
ysis because the participants were subjected to their
favourite music, and hence the sound condition was
different for each subject. The studies that are de-
scribed in Refs. [26, 27] contained seven sound con-
ditions with noise but without speech. These seven
sound conditions were not considered. In total, 58
data points remained. The study in Ref. [26] contained
a control condition with pink noise at 25 dB(A) SPL.
This sound condition was included in the analysis.
Table I provides an overview of the different studies.

2.2. Design and procedure

All experiments except from the experiment described
in Ref. [26] were performed in the High Performance
Indoor Environment Laboratory at Fraunhofer Insti-
tute for Building Physics with a volume of 132m3

under consistent room temperature, volumetric flow
rate, relative humidity, and illuminance. The study
in Ref. [26] was conducted at Catholic University
of Eichstätt-Ingolstadt. All sound conditions were
presented at both ears using Sennheiser HD 280
PRO or Sennheiser HD 600 headphones, respectively
(Sennheiser electronics GmbH & Co. KG, Wedemark,
Germany).

The experimental design of all experiments was a
one-way repeated measures design with ten to twelve
levels according to the tested sound conditions, i.e., all
subjects performed the test during the same sound
conditions. Silence and unmasked speech were in-
cluded as control conditions, except from the study
in Ref. [26] that used pink noise at 25 dB(A) as com-
parable control condition. All experiments tested 24
to 30 subjects. The participants received a small pay-
ment.

Table I. Overview of the included studies.

Source Primary comparison

[24] Reversed speech and stationary noise

[25] Babble and stationary sounds

[26] Steady and variable speech-like noise

[27] Different ventilation sounds

[28] Various masking signals

During each sound condition the subjects per-
formed a serial recall task where subjects had to mem-
orise a sequence of the numbers from 1 to 9 and recall
it in the exact order of presentation after a retention
interval of 8 to 10 s. Each digit that was not recalled
correctly at the presented serial position was counted
as an error. Subjective ratings were collected directly
after the serial recall task by means of a question-
naire. Recall was carried out by clicking numbers in
the same order on a 3 x 3 array on the screen. The
percentage of incorrectly recalled digit positions of all
tested sequences of one condition (mean error rate)
was determined.

2.3. Predictor variables

Zuydervliet et al. [29] suggested that background
levels can be described by the ninetieth percentile
LAF,90% and activity levels by the tenth percentile
LAF,10% while reducing the difference between them
is the objective of sound masking. L’Espérance et
al. [30] refined the proposed algorithm concluding that
the difference between the tenth percentile LAF,10%

and ninety-ninth percentile LAF,99% is an appropri-
ate metric to evaluate the level of disturbing noise in
offices.

On the basis of these proposed models the same per-
centile levels LA,1%, LA,90%, and LA,99% were taken
into consideration but the common time constants
impulse, fast, and slow were considered. The values
were calculated with the software ArtemiS version
12.05.1512 (HEAD acoustics GmbH, Herzogenrath,
Germany). In binaural listening conditions the max-
imum value at both ears was used. Since the sounds
were presented from frontal direction there were only
minor differences between both ears present.

A first analysis showed that LA,10%–LA,99% as well
as LA,10%–LA,90% are sensitive to SNR changes be-
tween –12 and 0 dB. Use of shorter time constants
exhibited a higher sensitivity whereas SPL fast mea-
sured led to much higher level differences in sound
conditions with clear speech as compared to SPL im-
pulse or slow measured.

2.4. Model fitting

The measured mean error rates were referred to the
silent baseline condition by subtracting the measured
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mean error rate during silence. In a second step,
the DP values were normalised by dividing all val-
ues by the DP value that was measured at the con-
trol condition with clear speech to account for dif-
ferences between the tested subject groups. The re-
lationship between the respective predictor variable
and the response variable DP was modelled by two
models, a logistic function and a Boltzmann sigmoid
function. The models were calculated in RStudio Ver-
sion 1.1.383 (RStudio, Inc., Boston, MA, USA). The
models were compared by using Spearman’s rank cor-
relation coefficient rS as well as Akaike Information
Criterion (AIC) and Bayesian Information Criterion
(BIC) [31].

2.5. Model validation

The measured DP values in short-term memory of
the studies of Jahncke et al. [18], Ebissou et al. [32],
and Ellermeier and Hellbrück [33] were used to as-
sess the prediction quality. The studies provided 21
data points. This data was not included in the first
model fit to enable a validation whether the model
can also be used for data obtained in different envi-
ronments than used at Fraunhofer Institute for Build-
ing Physics. The DP of the study of Ebissou et al.
[32] was referred to the values of subject group 1
that showed a distinct effect of the sound conditions
on mean error rates in serial recall. The data of Ex-
periment 2A in Ref. [33] was referred to noise alone
instead of a silent sound condition while the data
of Experiment 2B was referred to masked speech at
–12 dB SNR that resulted in similar mean error rates
than pink noise in Experiment 2A. The normalisation
of the DP values of Experiment 2B was performed
by dividing all DP values by the DP during masked
speech at +4 dB SNR because unmasked speech was
not included in this experiment and speech at +4 dB
SNR produced similar mean error rates as clear speech
in Experiment 2A.

3. Results

The model with Boltzmann sigmoid function with
four parameters did not increase the prediction
quality as compared to the model with logistic
function with three parameters. Thus, the analy-
sis was limited to the logistic model. Table II pro-
vides an overview of the quality of the fitted mod-
els. Based on rS , AIC, and BIC, the predictor
variables LAS,10%–LAS,90%, LAF,10%–LAF,90%, and
LAI,10%–LAI,99% were favoured. LAS,10%–LAS,90%

was excluded from further analysis because the de-
termined model had a very steep slope within a small
range of values, and hence it did not seem to result in
a robust prediction model.

The respective models are depicted in Figures 1
and 2. The graphs show the normalised DP values

Table II. Quality of the fitted models.

Predictor variable AIC BIC rS

LAS,10%–LAS,99% 13 21 0.65

LAS,10%–LAS,90% 11 19 0.67

LAF,10%–LAF,99% 15 23 0.67

LAF,10%–LAF,90% 10 18 0.66

LAI,10%–LAI,99% 14 22 0.59

LAI,10%–LAI,90% 19 28 0.49

of the six considered laboratory experiments over the
respective predictor variable. The curve shows the de-
termined model. The followings Equations 1 and 2
describe the formula of these models

DP
(
LAF,10% − LAF,90%

)
=

1.0

1 + exp(2.9− 1.4× (LAF,10% − LAF,90%))
, (1)

DP
(
LAI,10% − LAI,99%

)
=

1.0

1 + exp(5.5− 1.5× (LAI,10% − LAI,99%))
. (2)

Figures 3 and 4 depict the results of the vali-
dation of both favoured models with the data of
four additional experiments. The curves represent
the fitted models that were determined with the
first dataset. The mean squared error (MSE) be-
tween the data points and the respective model was
used to assess the quality of both prediction models,
DP (LAF,10% − LAF,90%) andDP (LAI,10%−LAI,99%).
The MSE was 0.039 and 0.043, respectively.

4. Discussion

The presented models that are based on the predic-
tor variables LAF,10%–LAF,90% and LAI,10%–LAI,99%

can be used to estimate the resulting cognitive
performance during an acoustic environment. Ac-
cording to the determined MSE values, the model
DP (LAF,10%–LAF,90%) appears to perform better
than DP (LAI,10%–LAI,99%). The suggested metrics
are easy to measure in-situ. Since occupational safety
and health in Germany requires the measurement of
noise rating levels Lr during representative tasks as
described by the standard DIN 45645-2 [22], the met-
rics could be determined as part of such measurements
without additional cost.

In a subsequent step these models could be used
for the acoustical design of open-plan offices when
adequate information about the background noise is
available (e.g. when a sound masking system is used).
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Figure 1. Normalised DP over LAF,10%–LAF,90%; the solid
line shows the fitted model. Please note that some values of
LAF,10%–LAF,90% were above 10, and hence are not plotted
in this figure.
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Figure 2. Normalised DP over LAI,10%–LAI,99%; the solid
line shows the fitted model.

There are obvious shortcomings that may limit
the applicability of the presented models. First, the
considered data consisted of a single voice that was
masked by various masking sounds. It remains un-
clear whether the models can be applied to more com-
plex sound environments, e.g., with multiple talkers
that may be spatially separated. Second, the predic-
tor variables estimate an SPL ratio between speech
and steady background noise but they take hardly
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Figure 3. Validation with normalised DP over LAF,10%–
LAF,90%; the solid line shows the respective model. The
studies in Refs. [18, 32, 33] were considered for the valida-
tion.
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Figure 4. Validation with normalised DP over LAI,10%–
LAI,99%; the solid line shows the respective model.

temporal-spectral variability into account. Further
analysis is necessary to verify whether these models
are suitable to asses work performance during irrele-
vant background speech in practical applications.
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