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Abstract
Until nowadays, an energetic approach called Statistical Energy Analysis (SEA) is widely used in acoustical pre-
diction. However, this method depends a lot on important coefficients such as Coupling Power Proportionality
(CPP), which is usually difficult to be analytically identified. For decades, people have worked on the extensions
or some alternative models of SEA, and some of them are trying to give an analytical expression of CPP. Never-
theless, it is always a challenge to deal with highly dissipative materials. In this paper, based on SEA principles,
we propose a quasi-analytical solution of CPP, which circumvents the limitation of light damping assumption.
With this energetic method, the Sound Transmission Loss (STL) of a dynamical multilayer system can be pre-
dicted correctly and rapidly, regardless of the dissipation of each layer. The numerical result of this proposed
method is compared with direct analytical methods and an alternative model of SEA for validating.

PACS no. 43.40.Rj, 43.55.Rg

1. Introduction

Nowadays, the analysis of buildings acoustic perfor-
mances becomes more and more difficult due to their
structural complexity and efficient numerical models are
required to predict their acoustic insulation. Finite Ele-
ment Method (FEM) [1] is well known for its high accu-
racy and wide range of applications in the low-frequency
domain. However, its numerical cost is very expensive
when the modal density number is getting high such as
in the medium- and high-frequency domains. In high fre-
quency domain, an energetic approach called Statistical
Energy Analysis (SEA) [2, 3, 4, 5, 6, 7] is widely used and
allows the vibro-acoustic behavior of complex structures
to be predicted. Nevertheless, it should be noted that the
SEA does not only rely on important coefficients, such as
the Coupling Power Proportionality (CPP), which are usu-
ally difficult to be analytically identified, but also relies on
several assumptions that restrict its domain of validity. In

(c) European Acoustics Association

the two last decades, some extensions or alternative mod-
els have been developed in order to predict the dynami-
cal response of a multilayer system [8, 9, 10, 13, 14, 15].
The method presented in [10] also consists in applying the
usual relations of the SEA for a set of weakly coupled
resonators which rely on CPP that can be calculated an-
alytically under some limitations. For example, using such
a method with highly dissipative materials is still a chal-
lenge. In this paper, we propose a method in order to cir-
cumvent this limitation and to be able to deal with highly
dissipative materials. This method consists in establish-
ing the expressions of CPP for a set of weakly coupled
resonators submitted to external forces modeled as uncor-
related stationary processes with constant spectral power
density in each frequency band. We give a numerical ex-
ample that is two acoustic rooms with a composite panel,
which is made up of a highly dissipative acoustic fluid
layer sandwiched between two thin elastic layer (metal
panel). An analysis of the numerical results is presented
with the proposed method, some direct modal solutions
and an alternative model of SEA. It is observed that the
proposed method can correctly and rapidly enough to pre-
dict the sound insulation with a small computing capac-
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Figure 1. A Fluid-Structure-dissipative fluid-Structure-Fluid sys-
tem

Figure 2. Partition wall with a separative structure

ity requirement for such a system with highly dissipative
properties.

2. Description of the dynamical system and
computational model

2.1. Dynamical system

For the sake of simplicity, we consider the following dy-
namical system, which consists in two acoustical cavities
that are separated by a composite wall (see Figure 1). The
wall is a multilayer viscoelastic medium that is made up
of a highly dissipative fluid medium that is sandwiched
between two solid elastic layers (see Figure 2).

2.2. Computational model

A computational model is constructed using the finite el-
ement method. Hereinafter, the five layers of the dynam-
ical system define five subsystems (i) with i = 1, . . . , 5
that respectively correspond to the first acoustic cavity, the
first solid elastic panel layer, the highly dissipative fluid
medium, the second elastic panel and the second acoustic
cavity. Let u(1), u(3) and u(5) be respectively the vectors of
all the nodal values of the velocity potential fields at each
node of the finite element mesh of respectively subsystem
1, 3 and 5 and let u(2) and u(4) be respectively the vectors
of all the nodal values of the displacement field at each

node of subsystems 2 and 4. Let [A(ii)(ω)] be the dynami-
cal stiffness matrix of subsystem (i). We then have

[A(ii)(ω)] = −ω2[M(ii)] + iω[D(ii)] + [K(ii)] ,

where [M(ii)], [K(ii)] and [D(ii)] are respectively the finite
element mass, damping and stiffness matrices of subsys-
tem (i). The finite element fluid-solid coupling matrices
between subsystems (i) and ( j) are denoted as [C(i j)]. Let
f(1) be the finite element vector that corresponds to the lin-
ear forms associated with the external loads applied on
subsystem (1). We then have,


[A(11)] −iω[C(12)]

iω[C(12)]T [A(22)] iω[C(23)]
−iω[C(23)]T [A(33)] −iω[C(34)]

iω[C(34)]T [A(44)] iω[C(45)]
−iω[C(45)]T [A(55)]




u(1)

u(2)

u(3)

u(4)

u(5)


=


f(1)

0
0
0
0


(1)

2.3. Reduced computational model

Let B be a frequency band of analysis included into R+.
We then introduce the rectangular modal matrix [Ψ(i)

B ]
of subsystem (i) that is such that its α-th column is the
eigenvector, which is associated with the α-th smallest
angular eigenfrequency belonging to B and to the solu-
tions of the generalized egeinvalue problem [K(ii)]Ψ(i)

α,B =

λ(i)
α,B [M(ii)]Ψ(i)

α,B. Hence, if B = [0, ωmax] then matrix [Ψ(i)
B ]

is the usual modal matrix. Let q(i), for i = 1, . . . , 5, be
the vector of the generalized coordinates for the modal de-
composition of u(i) on the frequency band B. We then have
u(i) = [Ψ(i)

B ] q(i). Let [A(ii)
B (ω)] = −ω2[M(ii)

B ] + iω[D(ii)
B ] +

[K (ii)
B ] be the generalized dynamical stiffness matrix of

subsystem (i) where [M(ii)
B ] = [Ψ(i)

B ]T [M(ii)][Ψ(i)
B ], [D(ii)

B ] =

[Ψ(i)
B ]T [D(ii)][Ψ(i)

B ] and [K (ii)
B ] = [Ψ(i)

B ]T [K(ii)][Ψ(i)
B ] are re-

spectively the generalized mass, damping and stiffness
matrices of subsystem (i). Matrices [M(ii)

B ] and [K (ii)
B ]

are definite-positive diagonal matrices and are written
as [M(ii)

B ]ασ = δασm(i)
α,B and [K (ii)

B ]ασ = δασm(i)
α,Bλ

(i)
α,B

where δασ is equal to 1 if α = σ and equal to 0 if
α , σ. It is assumed that the generalized damping ma-
trix [D(ii)

B ] is definite-positive diagonal and it is written as
[D(ii)

B ]ασ = 2δασm(i)
α,Bξ

(i)
α,B(λ(i)

α,B)1/2. Let [C(i j)
B ] be the gener-

alized fluid-solid coupling matrices between subsystems
(i) and ( j) defined as [C(i j)

B ] = [Ψ(i)
B ]T [C(i j)] [Ψ( j)

B ]. Let
F (1) = [Ψ(1)

B ]T f(1) be the generalized vector of the exter-
nal forces applied on subsystem (1). We then deduce from
Eq. (1),


[A(1)

B ] −iω[C(12)
B ]

iω[C(12)
B ]T [A(2)

B ] iω[C(23)
B ]

−iω[C(23)
B ]T [A(3)

B ] −iω[C(34)
B ]

iω[C(34)
B ]T [A(4)

B ] iω[C(45)
B ]

−iω[C(45)
B ]T [A(5)

B ]




q(1)

q(2)

q(3)

q(4)

q(5)


=


F (1)

0
0
0
0


(2)

The dynamic stiffness matrix in the left hand side of
Eq. (2) is denoted as [AB(ω)]. Let [TB(ω)] = [AB(ω)]−1

be the matrix-valued generalized frequency response func-
tion of the whole mechanical system. Matrix [TB(ω)] can
be decomposed into 25 blocs denoted as [T (i j)

B ] with i, j =

1, . . . , 5. Let n(i)
B be the truncation order of the modal de-

composition of u(i), and then n(i)
B is the number of columns
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of modal matrix [Ψ(i)
B ]. Hence, in all the following sections,

for all 1 ≤ α ≤ n(i)
B and 1 ≤ σ ≤ n(1)

B , T (i)
ασ,B denotes the

element [T (i j)
B ]ασ with j = 1.

2.4. Spectral mechanical energy density

The vector of the generalized external forces F (1)(ω) is re-
placed in Eq. (2) by a vector-valued random processes for
which the components are modeled as uncorrelated white
noises. Consequently, the spectral power density S (1)

σ of
random process F (1)

σ with 1 ≤ σ ≤ n(1)
B is written as

S (1)
σ (ω) = sσ where sσ is a constant and the mechanical

energy E(i) of subsystem (i) is modeled as a second-order
stationary random process indexed by R+. Let e(i)

B be the
spectral mechanical energy density of subsytem (i) that is
defined as, for all ω ∈ R+

e(i)
B (ω) =

n(i)
B∑

α=1

n(1)
B∑

σ=1

2 sσm(i)
α,Bω

2|T
(i)
ασ,B(ω)|2 .

If 〈·〉 denotes the mathematical expectation operator, then
〈E(i)〉 is the time-independent mean value of E(i). We then
have, for ωmax large enough and Bmax = [0, ωmax]

〈E(i)〉 =

∫
Bmax

e(i)
Bmax

(ω) dω .

We introduce 〈E(i)
B 〉 as the contribution of the frequency

band B ⊂ Bmax to the mean mechanical energy 〈E(i)〉 such
as,

〈E
(i)
B 〉 =

∫
B

e(i)
Bmax

(ω) dω .

2.5. Reduced order computational model with non
resonant coupling

In [10], authors pointed out that, for such a multilayer me-
chanical system, the eigenvectors of the fluid cavities are
coupled with eigenvectors of the solid elastic layers be-
longing to a lower frequency band. Consequently, there is
an implicit coupling between the acoustic cavities of this
mechanical system which is not taken into acount into the
constructing of matrix [AB(ω)] and in general∫

B
e(i)

Bmax
(ω) dω ,

∫
B

e(i)
B (ω) dω .

In order to circumvent this problem, in [10], authors pro-
pose to modify matrix [AB(ω)] and add a stiffness cou-
pling between the generalized coordinates of the acous-
tic cavities between different subsytems (i) and ( j), for in-
stance between subsystems (1)-(3) and (3)-(5). The modi-
fied generalized dynamical stiffness matrix is then written
as

[AB(ω)] =


[A(1)

B ] −iω[C(12)
B ] −[K (13)

B ]
iω[C(12)

B ]T [A(2)
B ] iω[C(23)

B ]
−[K (13)

B ]T −iω[C(23)
B ]T [A(3)

B ] −iω[C(34)
B ] −[K (35)

B ]
iω[C(34)

B ]T [A(4)
B ] iω[C(45)

B ]
−[K (35)

B ]T −iω[C(45)
B ]T [A(5)

B ]


(3)

where the expressions of matrices [K (13)
B ] and [K (35)

B ] are
given in[10]. Such a modified matrix [AB(ω)] allows for
the following approximation to be deduced from Eq. (3)

〈E
(i)
B 〉 '

∫
B

e(i)
B (ω) dω .

2.6. Approximation of the spectral mechanical en-
ergy density

In this work, we propose an approximation of e(i)
B . Such

an approximation can be obtained from the contribution
〈E

(i)
B 〉 with a frequency band B narrow enough such that

the variations of e(i)
B over B are slow. For a frequency band

B = [ωc − ∆ω/2, ωc + ∆ω/2] defined by a central angu-
lar frequency ωc and bandwidth ∆ω, we then have at first
order in ∆ω

e(i)
B (ωc) '

〈E
(i)
B 〉

∆ω
. (4)

3. Energy relations for the approximation
of the spectral energy density

In order to compute the approximation introduced in
Eq. (4), we have to calculate 〈E(i)

B 〉 that is the sum of all
the mean modal mechanical energy 〈E(i)

α,B〉. We then have

〈E
(i)
B 〉 =

n(i)
B∑

α=1

〈E
(i)
α,B〉 .

The proposed method consists in using the principles of
the SEA [12] in order to deduce a system of equations for
〈E

(i)
α,B〉. We introduce respectively the contributions 〈Π(i)

α,B〉,
〈P

(i)
α,B〉 and 〈Π(i j)

ασ,B〉 of the frequency band B as respectively
the mean modal input power, the mean modal dissipated
power and the mean modal exchanged power of subsys-
tems (i) and ( j). Following the principles of the SEA for a
set of resonators, we then deduce

〈Π
(i)
α,B〉 = 〈P

(i)
α,B〉 +

5∑
j,i

nB( j)∑
σ=1

〈Π
(i j)
ασ,B〉 , (5)

〈P
(i)
α,B〉 = 2 ξ(i)

α,B(λ(i)
α,B)1/2〈E

(i)
α,B〉 ,

and

〈Π
(i j)
ασ,B〉 = β

(i j)
ασ,B

(
〈E

(i)
α,B〉 − 〈E

( j)
σ,B〉

)
, (6)

where β(i j)
ασ,B is the modal coupling properties parameters

between subsystems (i) and ( j). In this work, we introduce
the Modal Coupling Power Proportionality (MCPP) that is
defined as

β
(i j)
ασ,B =

X(i j)
ασ,B

Y (i)
α,B

, (7)
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where

X(i j)
ασ,B =

∫
B

iω
{
(k(i j)
ασ,B + ω2m(i j)

ασ,B)2

+ ω2(c(i j)
ασ,B)2

}
T ( j)
σ,B(ω)|T (i)

α,B(ω)|2 dω , (8)

and

Y (i)
α,B =

∫
B

m(i)
α,Bω

2|T (i)
α,B(ω)|2 dω . (9)

in which k(i j)
ασ,B = [K (i j)

B ]ασ, m(i j)
ασ,B = [M(i j)

B ]ασ and c(i j)
ασ,B =

[C(i j)
B ]ασ. For the dynamical system presented in section

2.1, we have m(i j)
ασ,B = 0 when i , j. In addition, in Eq. (8),

the generalized frequency response function T (i)
α,B associ-

ated with the α-th generalized coordinate of subsystem (i)
is introduced and is defined as

T (i)
α,B(ω) =

(
−ω2m(i)

α + 2 iω (λ(i)
α )1/2m(i)

α ξ
(i)
α + λ(i)

α m(i)
α

)−1
.

In general, it should be noted that T (i)
α,B(ω) , T (i)

αα,B(ω).
Moreover, for the special case B = R+, analytical ex-
pression of β(i j)

ασ,R has been given by many authors [2, 3,
4, 5, 6, 7]. In [10], an approximation β(i j)

ασ,B,SEA of β(i j)
ασ,B is

constructed in replacing the integral over B by an integral
over R+ which allows the regular expressions of SEA to
be straightforwardly used. We have

β
(i j)
ασ,B ' β

(i j)
ασ,B,SEA =

X(i j)
ασ,B,SEA

Y (i)
α,B,SEA

, (10)

where

X(i j)
ασ,B,SEA =

∫ +∞

0
iω

{
(k(i j)
ασ,B + ω2m(i j)

ασ,B)2

+ ω2(c(i j)
ασ,B)2

}
T ( j)
σ,B(ω)|T (i)

α,B(ω)|2 dω , (11)

and

Y (i)
α,B,SEA =

∫ +∞

0
m(i)
α,Bω

2|T (i)
α,B(ω)|2 dω . (12)

Nevertheless, such an approximation is acceptable as long
as the generalized damping ratios are weak enough that
is to say when the equivalent bandwidth of the dynami-
cal linear filter defined by the frequency response function
T (i)
α,B are fully embedded into frequency band B. Such a

condition is not reached when materials are highly dissipa-
tive and it is the reason why we propose a definite integral
calculation of the modal coupling power proportionality
β

(i j)
ασ,B. We then deduce an explicit direct solution of Eq. (8)

without doing numerical integral in the next section.

4. Direct calculation of the Modal Coupling
Power Proportionality (MCPP)

In this section, we are interested in the calculation of β(i j)
ασ,B.

Rather than doing a numerical integration of Eqs.(8)-(9),

we propose a direct calculation. It should be noted that
for integral over R+ and for the case of elastic coupling,
such a calculation is already presented in [12]. We then
extend it into the case of skew symmetric coupling and for
definite integral over any given bounded frequency band
B = [ωc − ∆ω,ωc + ∆ω]. For the sake of simplicity, here-
inafter, we present only the obtained relation for the MCPP
between subsystems (1) and (2), between which there is
only vibroacoustic coupling and no elastic coupling. It can
be shown that

β(12)
ασ,B = (I1J22 + I2J21)/(J11J22 − J12J21) ,

where

I1 =
∆2

2 C2

m2
1 m2

∫
B

ω4

Q(ω)
dω

I2 =
∆2

1 C2

m2
2 m1

∫
B

ω4

Q(ω)
dω

J11 =
1

m1

∫
B

ω6 + (∆2
2 − 2Λ2)ω4 + Λ2

2ω
2

Q(ω)
dω

+
C2

2 m2
1 m2

∫
B

−ω4 + Λ2ω
2

Q(ω)
dω

J22 =
1

m2

∫
B

ω6 + (∆2
1 − 2Λ1)ω4 + Λ2

1ω
2

Q(ω)
dω

+
C2

2 m1 m2
2

∫
B

−ω4 + Λ1ω
2

Q(ω)
dω

J12 =
C2

2 m1 m2
2

∫
B

ω4 + Λ1ω
2

Q(ω)
dω

J21 =
C2

2 m2
1 m2

∫
B

ω4 + Λ2ω
2

Q(ω)
dω

with

Λ1 = λ(1)
α,B Λ2 = λ(2)

σ,B

∆1 = 2 ξ(1)
α,B

√
λ(1)
α,B ∆2 = 2 ξ(2)

σ,B

√
λ(2)
σ,B

m1 = m(1)
α,B m2 = m(2)

σ,B

Q(ω) = |Q(12)
ασ,B(ω)|2 C = [C(12)

B ]ασ

and

Q(12)
ασ,B(ω) = det

(
[A(1)

B (ω)]αα −iω [C(12)
B ]ασ

iω [C(12)
B ]ασ [A(2)

B (ω)]σσ

)
In these integrals, Q(ω) is an even monic polynomial of
degree q = 8, with real coefficients and values in R+.
Consequently, we have 8 roots z1, . . . , z8 for Q(ω). We can
therefore decompose these integrals with any polynomial
numerator P(ω) of degree p < q into 8 integrals :∫

B

P(ω)
Q(ω)

dω =

8∑
k=1

∫
B

Rk(zk)
ω − zk

dω

with Rk the residues. However, the residues can be analyt-
ically calculated when ω is extremely close to the roots.
We then have

Rk(zk) =
P(zk)
Q′(zk)
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Figure 3. Values of damping ratio in 3 cases

in which Q′(ω) = dQ(ω)/dω and so that∫
B

P(ω)
Q(ω)

dω = F(ωc + ∆ω/2) − F(ωc − ∆ω/2) ,

where

F(ω) =

8∑
k=1

P(zk)
Q′(zk)

ln(ω − zk) .

5. Numerical application

5.1. Description of the dynamical system for the nu-
merical application

This method is compared with a direct calculation of so-
lutions of Eq.(2) (Direct Method 1) and Eq.(3) (Direct
Method 2), and with the SmEdA method which consists in
using approximation defined by Eqs. (10)-(12). Note that
with Direct Method 1, we take B = [0, ωmax]. We choose
1/3 octave as the frequency bandwidth. The properties of
each subsystem are listed in the tables I and II, with the
length and same width of the whole multilayer system that
are equal to 0.8m and 0.6m respectively. The variation of
damping ratio for the dissipative layer is shown in Figure 3
for 3 cases (1 < ξ(3), 0.3 < ξ(3) < 1, 0.005 < ξ(3) < 0.001).

5.2. Energy noise reduction

The quantity of interest for this application is the Sound
Transmission Loss (STL) that can directly be quantified by
the Energy Noise Reduction (ENR) denoted as rENR,B and
that is defined as the ratio between the mean values of the
random total mechanical energy E(1)

B and E(5)
B respectively

of subsytems (1) and (5). We then have (for a ENR in dB)

rENR,B = 10 log10

 〈E(1)
B 〉

〈E
(5)
B 〉

 . (13)

125 250 500 1000 2000
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70

80

90

100

110

dB

Transmission Loss of FSPSF system

Direct Method 1
Direct Method 2
SmEdA
Proposed method

Figure 4. Sound transmission loss estimated with case 1 (damp-
ing ratio 1 < ξ(3))

5.3. Discussion of the numerical results

After finding all β(i j)
ασ,B matrices, we solve the equations (5)-

(6). We then put these 〈E(1)
B 〉 and 〈E(5)

B 〉 into equation (13)
in order to have a curve of rENR. From Figures 4-6, it can
be observed that the sound transmission loss calculated
by the proposed method improves the approximation used
by SmEdA (see Eqs. (10) to (12)) for high damping ratio
ξ(3). It is encouraging that the results of proposed method
match perfectly those of Direct Method 2 in medium-
high frequency domain and even in low frequency domain.
The results are presented for a frequency band of anal-
ysis [0, ωmax] that is limited to ωmax/2π = 2245Hz due
to the limitations of the high computational cost induced
by Direct Method 1. It can be noted that in very low fre-
quency domain, there are small differences between Di-
rect Method 1 and the proposed method as well as the
Direct Method 2. It is due to the errors of approximation
from the non-resonant condensation and to the low modal
density in each frequency band in very low frequencies
that are not sufficient for yielding a good approximation
(see Fig 7). However, in medium-and high-frequency do-
mains, the modal density rises very fast, which makes the
proposed method and Direct Method 2 accurate enough.
Moreover, as the non-resonant condensation is made, the
proposed method has smaller matrix size, which reduces
its computational cost in medium-high frequency domain.

6. Conclusion

We proposed a method for improving the prediction of the
acoustic performances for high dissipative dynamical sys-
tems in medium- and high- frequency domains. Since this
method carries out an explicit calculation of the Modal
Coupling Power Proportionality coefficients of the SEA
method, we do not have to inverse the whole dynamical
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Table I. Properties of fluid subsystems.

subsystems thickness (m) density ρ (kg/m3) sound’s velocity C (m/s) damping ratio ξ
(1) 0.8 1.29 340 0.005
(3) 0.1 1.29 340 see Figure 3
(5) 0.7 1.29 340 0.005

Table II. Properties of elastic subsystems.

subsystems thickness (m) density ρ (kg/m3) Young’s Modulus E (Pa) Poisson’s ratio ν damping ratio ξ
(2) 0.001 7800 2 × 1011 0.3 0.005
(4) 0.001 7800 2 × 1011 0.3 0.005
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Figure 5. Sound transmission loss estimated with case 2 (damp-
ing ratio 0.3 < ξ(3) < 1)
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Figure 6. Sound transmission loss estimated with case 3 (damp-
ing ratio 0.005 < ξ(3) < 0.01)

stiffness matrix, which reduces drastically the computa-
tional cost when the modal density increases in medium-
high frequency domains.
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Figure 7. Modal density in each frequency band
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