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Abstract
In multi story buildings the use of Cross Laminated Timber (CLT) is increasing. Therefore, sound
insulation requirements have to be met and the prediction of sound insulation for this construction
type is necessary. With the exception of low frequencies, Statistical Energy Analysis (SEA) is used
in building acoustics for this purpose, which requires material properties as input data. The material
characterisation of Cross Laminated Timber is a challenge. On the one hand, the composite material
consists of several layers of boards; on the other hand, wood itself is inhomogeneous, anisotropic
and has a low shear modulus. Differences in the manufacturing process such as the use of glue and
grooves also have an impact on the overall rigidity of the plate. A characterisation based on thin plate
theory is insufficient for the frequency range of building acoustics. One possibility to address this
challenge is the experimental determination of frequency dependent phase velocities of bending waves
in a plate that account for the above-mentioned effects. From the wave velocities the modal density
used in SEA can be calculated very efficiently. This contribution focus on the time-of-flight method
and phase difference method to determine phase velocities. In a case study, the direction-dependent
global stiffness parameters were determined using first shear deformation theory. The measurement
conditions and evaluation procedures are discussed.

PACS no. 62.65.+k, 62.30.+d

1. Introduction

For the calculation of structure-borne sound propaga-
tion in the building acoustic frequency range the ex-
perimental determination of phase velocities in CLT is
presented; previous work can be found in [1–6]. Other
methods are also available for this purpose, such as
Spatial Fourier Transform of the vibration field [7–
9] or updating a FE model or an experimental modal
analysis [4, 10], but these will not be addressed herein.

The resulting material parameters from modal
methods are based on the low frequency range be-
haviour and are not necessarily suitable for higher fre-
quencies. In the low frequency range, the sensitivity
of the shear modulus to the apparent bending waves
is negligible (Fig. 1). This can lead to strong devia-
tions within a model update. Also differences in the
boundary conditions between model acceptance and
experiment.

(c) European Acoustics Association

In methods based on the elastic properties of a pure
piece of wood and using the composite theory in order
to draw conclusions about the properties of the CLT,
it is particularly difficult to take the global shear effect
into account.

Figure 1 shows that the shear influence on apparent
bending waves of a CLT plate is significantly more
pronounced in the building acoustic frequency range
compared to a concrete plate of the same thickness.
This is due to the low shear modulus typical of wood.

2. Theory

2.1. Modal density

In SEA the modal density n is the central parameter
to describe the energy content of a subsystem. Gener-
ally, modal density in s/rad is found by differentiating
the number of modes N with respect to the angular
frequency ω

n(ω) =
∂N

∂k

∂k

∂ω
. (1)
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In [11] an asymptotically equal calculation of modal
density is described for a particular wave type of a
two-dimensional system, e.g. a plate.

n2D(ω) ' S

2π

ω

c

1

cg
+ Γ′

BC P (2)

The factor Γ′
BC considers the effect of the boundary

condition and P is the perimeter. With increasing fre-
quency the influence of the boundary condition is de-
creasing. Lyon and DeJong [11] suggested to assume
Γ′
BC ' 0 for connected subsystems. Neglecting this

term in (2) the modal density depends only on the
• geometry by using the surface area S and the
• material by using the phase velocity c of the specific

wave type.
cg is called the group velocity and is explained in the
next section. Equation (2) shows the importance for
the knowledge of the wave velocities for the proper
application of the SEA.

2.2. Velocity of wave propagation

In the case of a monochromatic wave in a solid or in
a fluid, the correlation between spatial and temporal
propagation is described by phase velocity (3). This
can be expressed by angular frequency ω and wave
number k.

c =
ω

k
= λ f (3)

In the case of a group of waves with slightly different
wave numbers the propagation velocity of the enve-
lope of this group is given by the group velocity cg
according to (4). For a small range of wave numbers it
can be interpreted as a mean velocity for the involved
waves. Energy propagation occurs with the group ve-
locity.

cg =
∂ω

∂k
= c+

∂c

∂k
k (4)

Usually the wave velocity is dependent on the wave
number; this dependency is called dispersion. Only in
the non-dispersive case the group velocity equals the
phase velocity. The wave types of an isotropic plate
are explained below.

2.2.1. Quasi-longitudinal waves
These waves can be assumed as non-dispersive below
a certain wave number, where the wavelength is much
greater than the plate thickness. At this acoustic thin
plate condition the phase velocity is given by (5).

cL =

√
E

ρ (1− µ2)
(f < fL) (5)

The corresponding high frequency limit fL for this
assumption is described in e.g. [12, 13].

2.2.2. Transverse shear waves
These waves are non-dispersive as well. The phase ve-
locity in (6) depends on shear modulus G and den-
sity ρ.

cT =

√
G

ρ
(6)

2.2.3. Bending waves
These waves are dispersive. For calculation of the
phase velocity of apparent bending waves the fre-
quency range can be subdivided into three parts.
Starting from an approach for acoustic thin plates,
more general approaches are presented step-by-step.

Part I In the case of wavelength being much greater
than the plate thickness l3 the phase velocity of bend-
ing waves can be calculated according classic thin
plate theory (Kirchhoff).

cB = 4

√
ω2 Bp

ρ l3
=

4

√
ω2 l3

2

12
cL2 (f < fB) (7)

The frequency limit fB is described in [13].

Part II For moderately thick plates the bending
wave equation can be modified considering shear de-
formation and rotatory inertia [15]. The two ap-
proaches below take into account these influences on
the phase velocities of bending waves, but differences
between the low and high frequency asymptotes of the
apparent bending waves are small in Figure 1.

(a) In [1, 16] an effective phase velocity of bend-
ing waves (8) is defined as combination of bending
and transverse shear waves to consider the shear in-
fluence at higher frequencies. The shear stiffness and
the bending stiffness is assumed to be connected in
parallel. In [cf. 1] an approximation (9) is suggested
with an accuracy in the range of ±1% of (8).

cBeff =
cB

2

κ cT

√
−1

2
+

1

2

√
1 + 4

(κ cT
cB

)4
(8)

≈
( 1

cB3
+

1

(κ cT)3

)− 1
3 (9)

(b) In [12, 17, 18] the effective phase velocity of
bending waves is defined as combination of bending,
transverse shear and quasi-longitudinal waves accord-
ing to (10).

cBeff =

(
1

2

( 1

cL2
+

1

κ2 cT2

)
(10)

+

√
1

cB4
+

1

4

( 1

κ2 cT2
− 1

cL2

)2)−0.5
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Figure 1. Shear influence on the phase velocities of apparent bending waves cBeff of a concrete plate (left) with E =
13.6GPa, µ = 0.3 and ρ = 2300 kg/m3 [14] in comparison to a Cross Laminated Timber plate (right) in the principal
direction with E1 = 8.24GPa, µ13,31 = 0.3 and ρ = 450 kg/m3. The thickness is approximately 0.16m in both cases.

Part III For very small wavelengths compared to
the plate thickness, the wave velocity changes asymp-
totically to the surface wave velocity. Lord Rayleigh
[19] calculated for the first time for an elastic half
space this surface wave velocity, the so-called Rayleigh
wave velocity cR. It is slightly slower than the trans-
verse shear wave velocity (11) [cf. 15, 19].

cR = κ cT (11)

Depending on the Poisson ratio µ the refractive index
κ can be calculated by (12) [cf. 15, 19].

(2− κ2)2 = 4
√
(1− ακ2) (1− κ2) with (12)

α =
cT

2

cL2
,pure

=
1− 2µ

2(1− µ)
(13)

In (13) the constant phase velocity of pure longitu-
dinal waves cL,pure is used. For the range of Pois-
son’s ratio [0 < µ ≤ 0.5] the results are in the range
[0.874 . κ . 0.955].

The difference between transverse shear wave ve-
locity and the surface wave velocity was neglected in
[1] for (8) and (9) and in [17] for (10), which corre-
sponds to use κ = 1. The difference was considered in
[12, 13, 15, 20, 21] by using the Rayleigh surface wave
velocity as high frequency asymptote.

3. Experiment

3.1. Set-up

In a case study a 3-ply CLT panel, mounted in a heavy
test frame was measured. The identical plate was al-
ready subject of an earlier study two years ago [23],
which is called experiment 1. The new measurement is
definded as experiment 2. The set-up of experiment 1
is the same as described in [2], but for another CLT
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Figure 2. Excitation and observer positions of the mea-
surement to determine the phase velocities. The 3-ply CLT
plate with the dimensions 2.90m× 4.20m× 0.10m and
ρ = 484 kg/m3 is identical to the one in [22]. The layer
thicknesses are 30mm, 40mm and 30mm.

panel. The dimensions of the panel, the source posi-
tion of the shaker and the positions of the accelerom-
eters are shown in Figure 2. The measurement was
always executed perpendicular to the plate plane in
direction x3. In the following, therefore, only a is used
instead of a3. The positions must be sufficiently apart
from the source to prevent measurement in the near
field range and from the edges of the panel so that the
first reflection (red path in Fig. 2 for Position E) is not
present too early in the time signal of the accelerom-
eters at low frequencies. These positions are the same
in both experiments, but there are some differences
between the used measurement equipment and set-up
listed in Table I.
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Figure 3. Sinusoidal pulse with Hanning windowing as pre-
defined excitation signal.

In order to ensure that high frequencies can also be
excited, the shaker attachment should be designed in
such a way that eigen frequencies, e. g. by the stinger,
are above the frequency range of interest. The diam-
eter of the contact surface between attachment of the
shaker and the panel should be smaller than one sixth
of the expected bending wavelength [cf. 12] to enable
the excitation of high frequencies.

As mentioned in section 2.2.3, bending waves are
dispersive, therefore the measurement is performed
for individual frequencies. For both experiments short
sinusoidal pulses (Fig.3) were used with 2.5 cycles and
were smoothed with a Hanning window. In fact, it
does not excite a single frequency, but rather a narrow
frequency band. But if the frequency band is very nar-
row, the influence of the dispersion in this band can
be neglected. For this reason it is necessary to use
a smooth fade in of the sinusoidal excitation signal.
Furthermore an additional broad excitation due to an
excessively abrupt transition is avoided. The time res-
olution of the excitation signal should be high enough
to represent a sinusoidal period through many data
points even at the highest frequency of interest.

For an efficient measurement in experiment 2, an
excitation signal was generated by incorporating the
individual pulses for the different frequencies one after
the other, each with a sufficient delay of about 1 s
between the individual signals, so that the vibration
at the accelerometers on the plate had faded out.

3.2. Measurement evaluation

3.2.1. Pre-processing of raw data
Before the main evaluation with the time-of-flight
(ToF) or the phase difference (PhD) method, the
raw time data is preprocessed in the same way. The
sign definition must be equal for both time signals.
First the background noise is found as the the median
within the time window [tBN,start, tBN,end] and the en-
tire time signal is corrected by this value to ensure
there is no offset.

For processing only a short duration at the begin-
ning of the active vibration signal is used, as reflec-
tions by the plate edges occur very early due to the
finite dimensions of the plate. In order to determine

0
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max |H{araw}|

tTh

t in s

a
in

m
/
s

araw

|H{araw}|
a

Figure 4. Time window selection for a measured accelera-
tion araw using a low pass filter in the time domain.

the approximate arrival time tTh of the active vibra-
tion, the exceeding of a threshold value aTh for the
acceleration is used (Fig. 4). In order to determine the
threshold value, the envelope of the time signal is first
formed using the magnitude of the Hilbert transfor-
mation of araw. The product of force amplitude ratio
β of the predefined excitation signal in Figure 3 and
the first significant maximum of the envelope of the
acceleration gives the threshold value (14).

aTh = β max |H{araw}| (14)

with
(
Fmax1

Fmax2
< β < |Fmin1|

Fmax2

)
H{araw} = araw ∗ 1

πt
(15)

From this approximate start time, a time window for
processing is defined. The duration is dependent on
the excitation frequency. The first zero crossings are
searched within this time window tlp (Fig. 4). The zero
crossings that take place for both sensors with the
same sign change are set as the end point of the anal-
ysis. Any signal that occurs afterwards is replaced by
zeros. It can be interpreted as a low pass filter in time
domain to avoid the influence of reflections as far as
possible.

3.2.2. Time-of-flight method
Using this method the phase velocity in direction i
is calculated directly from the spacing d between two
measuring positions X and Y to the time delay τ of
the phase between the time signals according to (16),
if X, Y and the source position S are on the same path
(cf. Fig.2).

c =
d(X,Y)

τ(aX, aY)
(t < tReflection) (16)

To calculate the time delay of the discrete time sig-
nals, characteristic features such as peak-to-peak or
zero crossings can be used. However, small noise lev-
els in the signal can have a significant influence on
the result. A much more robust method is cross cor-
relation, since it is based on more information than
individual data points.
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Table I. Measurement equipment and set-up used to determine the phase velocities.

Experiment 1 [2, 23] Experiment 2

Data acquisition National Instruments® Müller-BBM VibroAkustik Systeme GmbH, PAK MKII
Sample rate 120 000Hz 102 400Hz

Accelerometer PCB PiezotronicsINC., 353B15 Brüel & Kjær, 4513-B-002
Sensitivity (10± 1)mV/g (500± 50)mV/g

Shaker Brüel & Kjær, 4809
Excitation signal sinusoidal pulses (2.5 cycles), Hanning windowed
Preset excitation [100:20:3000] Hz [100:160:3000] Hz

It is used here with the Matlab® function xcorr.m
to calculate the time delay τ from the maximum of the
cross correlation between both prepared time signals
in (17) and (18) according section 3.2.1.

RXY(L) =
(
aX ? aY

)
(L) (17)

τ(aX, aY) =
L(maxRXY)

f s
(18)

Thereby L represents the number of shifted samples
of the discrete cross correlation.

3.2.3. Phase difference method
An alternative method to determine phase velocities
is the PhD method. According to [1, 2] the results of
this method are more reliable at low frequencies as
results from the ToF method.

c = ω
d(X,Y)

|φ(aX, aY)|
(t < tReflection) (19)

Before calculating the phase difference φ in the de-
nominator of (19), the Matlab® function unwrap.m
is applied to the phase angels of both complex sig-
nals. It corrects the radian phase angles by adding
multiples of ±2π at phase changes between consecu-
tive elements of the signals greater than or equal to a
phase change tolerance of π radians. For the distance
d of the sensors no spatial but a temporal sampling
theorem must be considered, because the temporal
wave and not the spatial wave is used in this method.

3.3. Limitations and uncertainties
3.3.1. Limitations
For low frequencies, the requirement on the minimal
time window is in conflict with the requirement to
avoid edge reflections in the signal to be analysed.
Depending on the difference of the arrival time of the
wave front at the sensor from the shortest indirect
path to the direct path (Fig. 2), the time signal with-
out reflection is too short to be evaluated according
to the procedure in section 3.2.

For high frequencies, additional oscillations can su-
perpose the signals to be analysed. These can be
caused by

• thickness resonances,
• resonances of sensor attachment or
• reflections on impedance discontinuities.

For the ToF as well as for the PhD method a pos-
sible phase offset between the channels used in the
measurement should be taken into account. Further-
more, the relative uncertainty of the phase velocity
results from different input quantities according (20)
or (21) and are explained in the following subsections.

uc,ToF =
√

u2
d + u2

τ (20)

uc,PhD =
√
u2
d + u2

φ + u2
f (21)

3.3.2. Frequency
The relative uncertainty uf in the determination of
the frequency of the sinusoidal signal by means of
Fourier transformation in (23) is due to the finite time
signal with duration T tot and is given by (22).

uf =
1

T tot f
(22)

It is necessary that a sufficient length of a vibration
above noise is contained in the time signal. This kind
of uncertainty decreases with increasing frequency
and is negligible if T tot is set sufficiently high by zero
padding.

If the frequency is not determined directly from the
time signal but rather from the pre-defined excitation
signal, considerable deviations can occur as a system-
atic deviation. These can partly be attributed to the
dynamic properties of the structure or the shaker at-
tachment. At low frequencies where the degree of dis-
persion is higher and the modal density is lower, this
deviation can be significant (cf. cL in Tab. II).

Another aspect is the dispersion due to the effec-
tively excited frequency bandwidth, which is not in-
finitely narrow. Thus, slightly different frequencies are
determined for the two time signals according to (23)
in the Fast Fourier Transform (FFT) spectrum. To
minimise this blur on the dispersion relationship the
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Figure 5. Relative uncertainty only due to time discretisa-
tion uτ depending on the phase velocity c and distance d
at a sampling rate f s = 102 400Hz.

arithmetic mean of these is used as approximately ef-
fective excitation frequency f̄ in(24).

f = max |F{a}| (23)

f̄ =
fX + fY

2
(24)

3.3.3. Distance
The relative uncertainty in distance is given by (25).

ud =
2∆d

d
(25)

∆d is the accurateness of determining the distance of
the position of the accelerometers. A deviation in the
distance leads to a systematic deviation in the entire
dispersion relationship.

3.3.4. Time delay
The relative uncertainty of the time delay uτ is de-
termined by the sampling rate fs of the measuring
system and the time delay τ between the two measur-
ing positions according to (26).

uτ =
1

f sτ
=

1

fs

c

d
(26)

For the actual sampling rate of experiment 2 the cor-
relation between relative uncertainty, phase velocity
and distance is shown in Figure 5.

3.3.5. Phase difference
If the distance of the accelerometer is fixed the rela-
tive uncertainty uφ depends on several factors like the
wavelength, the sampling rate and the time window
length. Since it also depends on the representation of
the vibration, it is not straightforward to quantify.

3.4. Regression analysis

Based on the relationships of the phase velocities of
apparent bending waves in section 2.2.3 two equations
are used to fit the phase velocities of surface waves cR
and the quasi-longitudinal waves cL.

(a) By inserting (6) and (7) in (8) equation (27) can
be derived.

cBeff =
cL
cR

√
ω2l3

2

12

√√√√−1

2
+

√
1

4
+

c4R
cL2

12

ω2l3
2 (27)

(b) Inserting them in (10), equation (28) is ob-
tained.

cBeff =

(
1

2

( 1

c2R
+

1

cL2

)
(28)

+

√
12

ω2 l3
2 cL2

+
1

4

( 1

c2R
− 1

cL2

)2)−0.5

To minimise the influence of single outliers, bisquare
weights are used as a robust regression method. Due
to the limitations in section 3.3.1, the frequency range
for the fit is limited to both low and high frequencies.
The confidence level of the fit results is α = 95%.

4. Results

The constant settings for the evaluation process are
tBN =: [0.6T, 1.5T ], β =: 1/7 and d = (300± 2)mm.
For this value of d the relative distance uncertainty
is negligible (ud ≤ 0.7%) and the relative uncertainty
of time delay is uτ ≤ 3% according to Figure 5. The
relative uncertainty for the frequency determination
using the FFT is uf ≤ 1% for f ≥ 400Hz in case
of Ttot = 0.25 s according (23). The frequency range
for all regression analyses is limited to f [400, 2500].
The uncertainties of the individual data points are
neglected for the regression.

In Figure 6 the results of the two experiments are
compared. Despite the two years between the two
experiments, different experimenters and partly dif-
ferent measurement techniques (Tab. I), the repro-
ducibility is significantly high. It also indicates the
robustness of the evaluation process. The significant
deviation above 1 kHz is due to an overload in the raw
data of experiment 1.

One hypothesis for the outliers in Figure 6 on the
right at f ≥ 2.7 kHz is that the intersections between
the individual boards forming the top layer of CLT
represent impedance discontinuities in direction x2 as
soon as the board spacing is greater than half the
wavelength. In this case the propagation of surface
waves would be influenced by reflections and the eval-
uation according to section 3.2 would fail.

Figure 7 shows the equivalent results to Figure 6
on the left but using the ToF method. The quasi-
longitudinal phase velocity determined by the ToF
method is significantly higher. This does not hold for
the velocity of the surface waves. When estimating the
modulus of elasticity, the use of the fitted cLi from the
PhD method leads to more plausible results. The error
bars in Figure 7 show resulting uncertainties according
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Figure 6. Phase velocities of apparent bending waves using the phase difference (PhD) method, applied to the time raw
data of experiment 1 (grey) and 2 (black) of the identical Cross Laminated Timber plate with l3 = 100mm.
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Figure 7. Phase velocities of apparent bending waves us-
ing time-of-flight (ToF) method of experiment 2. The bars
represents the uncertainties according (20).

(20) caused by time discretisation and distance. The
absolute uncertainties are increasing with frequency.

Table II gives an overview of variants of the regres-
sion analysis regarding the input data from the evalu-
ation methods and frequency allocation. Only results
according to (27) are shown, since these results differ
only slightly from those according to (28). All variants
using the PhD method show lower quasi-longitudinal
wave velocities. The procedure of frequency allocation
has an influence on the quality of the regression. In
case of a strong dispersion (x2), the frequency result-

ing from a FFT leads to a higher degree of determi-
nation.

5. Conclusions

The determination of the phase velocity of apparent
bending waves is possible by using the phase difference
method and the time of flight method.

Overall, the results of the two methods show a high
degree of agreement with the exception at low fre-
quencies where the phase difference method leads to
more plausible results. The frequency of the signal at
the accelerometer should be determined from a FFT
rather than using the defined of the input signal for
excitation.

With regression models the direction-dependent
and frequency-independent phase velocities of quasi-
longitudinal waves and surface waves can be deter-
mined with high fit qualities. For the current data set
a large part of the building acoustic frequency range
could be covered. The shear effect has a decisive influ-
ence on the apparent bending waves of wood materials
such as CLT in this frequency range. The velocity of
the surface waves takes this shear effect into account.
These issues demonstrate the advantages of material
characterisation using the wave velocities cLi and cRi

for application in the SEA. To calculate the modal
density in (2) the geometric mean of the direction de-
pendent phase velocities and group velocities can be
used [cf. 11]. The calculation of the elastic constants
(Ei, Gij) leads to an increase in uncertainties, since
additional direction dependent input variables such
as Poisson’s ratios and refractive indices of surface to
to transverse shear waves κi are necessary but often
not known for a composite material such as CLT.
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Table II. Results of the regression analysis with confidence level α for phase velocities of quasi-longitudinal and surface
waves in case of experiment 2 for direction i. The abbreviations are phase difference (PhD) method, time-of-flight (ToF)
and pre-defined excitation frequency (pd). The relative uncertainty due to the confidence interval is also given.

i Method f cRi in m/s with α = 0.95 ucR,α cLi in m/s with α = 0.95 ucL,α R2

1 PhD FFT

700 800 900 1,000

0.01

2,000 4,000 6,000 8,000

0.07 0.95
1 ToF FFT 0.01 0.06 0.97
1 PhD pd 0.01 0.07 0.96
1 ToF pd 0.01 0.08 0.94
2 PhD FFT 0.08 0.07 0.98
2 ToF FFT 0.08 0.08 0.98
2 PhD pd 0.15 0.15 0.92
2 ToF pd 0.10 0.15 0.91
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