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Summary

This paper reports on the characterization of the mechanical properties of a point excited and

line excited porous material by means of the inhomogeneous wave correlation approach based on the

Hankel's function. The correlation approach allows the wavenumber to be complex. Both propagating

waves and evanescent waves are considered. Excitation along a line is approximated by means of an

array of points. First order re�ections from the edges are taken into account by mirror images. The

material properties, in terms of Young's modulus and loss factor, are estimated by means of Mindlin's

plate theory. The obtained results are compared with Kirchho�'s thin shell theory and Lamb wave

theory.

A numerical model was used to simulate measurements on a porous sample. Knowing the material

properties a priori (i.e. the properties that were used as input to the numerical simulation), opened

the possibility to check the correctness of the characterization procedure and zoom in on possible

deviations.

It was found that at higher frequencies and thicker slabs Kirchho�'s thin shell theory is clearly

insu�cient. It was also found that for the frequency range and thicknesses studied, Mindlin's plate

theory and Lamb wave theory are not very much di�erent (error in wavenumber less than 2% for

frequencies up to 1000 Hz and thicknesses up to 10 mm). Good results were obtained for the Young's

modulus and the loss factor of the slab material by considering evanescent waves and re�ections from

the edges of the slab by means of mirror images, using Mindlin's thick plate theory. Taking into

account the �rst order re�ection seems su�cient for the type of slab and frequencies considered.

PACS no. 43.20.Jr

1. Introduction

Characterisation of porous material can be done in
several manners, the most commonly used approach
being a compression test. Less common, is a Lamb
wave experimental test, in which a shaker excites the
slab at one point and a scanning Laser Doppler Vi-
brometer (LDV) probes the vibrational response at a
number of positions (see Figure 1). Thus the vibra-
tional response is measured as function of frequency
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and position, allowing to assess the dispersion rela-
tionships of the material, and from that, the material
properties.

This paper focusses on the Lamb wave experimental
test. A numerical (FEM) model is used to generate
the 'measurement' data. Material characterization is
attempted in a number of ways.

2. Materials and methods

The sample studied is a porous material with the di-
mensions and material properties as mentioned in Ta-
ble I. The material is assumed to be homogeneous,
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Figure 1. Lamb wave experimental set-up, with shaker and
scanning Laser Doppler Vibrometer (LDV)

Table I. Dimensions and material properties porous mate-
rial studied.
Young's modulus 3.5e5 (1 + 0.3 · i) Pa
Poisson's ratio 0.33
Density 48 kg/m3

thickness 2.5 mm and 10 mm
width 50 cm
height 50 cm

made from a solid material with mentioned material
properties. Two con�gurations were studied. In con-
�guration 1 (Figure 2) the sample was point excited at
the top, having symmetry boundary conditions acting
on this edge. In con�guration 2 (Figure 3) the sam-
ple was clamped at the top, and excited by means of
a shaker along a line. In practice, this can be done
by mounting a knife to the shaker. This line was po-
sitioned 3.5 cm below the clamped edge, and has a
length of 10 cm. Simulations were performed by means
of the �nite element method.
The resulting responses were computed along a line

of points located on the line of symmetry (indicated
by a dash-dotted line in Figures 2 and 3) for a range
of frequencies. The characterization of the material
was performed by �tting these responses by means
of a wave correlation procedure, involving complex
valued propagating waves and evanescent waves. This
approach is brie�y described in the next subsections.

2.1. Theory of the wave correlation method
for a point excited, �nite samples

2.1.1. Kirchho�'s thin plate theory

The theory that is used in this paper is described by
Roozen et. al [1]. In this section a brief summary is
given.
Basically, the approach in [1] �ts vibrational (mea-

surement) data by means of the fundamental solution
(the Green's function) of a thin, point-excited, in�nite
plate. This Green's function corresponds to a Hankel
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Figure 2. dimensions and boundary conditions of simu-
lated foam slab, point excitation.
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Figure 3. dimensions and boundary conditions of simu-
lated foam slab, knife excitation.

function, and reads

Φ (x, y, x0, y0) =

1

8k2fD

(
H

(1)
0 (kf‖r‖)−H(1)

0 (ikf‖r‖)
)

(1)

where H
(1)
0 is the cylindrical Hankel's function of the

�rst kind of order 0, and ‖r‖ = ‖(x − x0, y − y0)‖ is
the source-to-receiver distance.

The vibrational (measurement) data w is �tted by
searching for an optimal projection of the vibrational
data on to a number of Green's function Φ, contained
in a matrix Φ, each Green's function either represent-
ing the waves emanating from the point of excitation,
or from re�ections from the boundaries using an im-
age source approach (see [1] for more details). For this
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purpose the projected vibrational �eld w̃ is computed
with

w̃ = ΦΦ+λw. (2)

where '+λ' represents the generalized inverse (possi-
bly regularized with parameter λ; see [1]). The ade-
quacy between matrix Φ and measurements w is quan-
ti�ed by the following normalized reconstruction error

e =
‖w − w̃‖2

‖w‖2
, (3)

Minimizing this error e by varying the complex
wavenumber kf in Eq. 1, yields an important sti�ness-
and damping parameter that characterizes the mate-
rial.
Using Kirchho�'s theory of thin plates, the dynamic

�exural rigidity DKirchhoff = EKirchhoffh
3/12

(
1 − ν2

)
and the �exural wave number kf are related by the
equation

kf =

(
ω2 ρh

DKirchhoff

)1/4

(4)

where h is the plate thickness Thus the Young's mod-
ulus EKirchhoff can be determined from the �tted
wavenumber kf , assuming some value for the Pois-
son's ratio ν (usually taken to be 0.3).
In the above it is assumed that Kirchho�'s theory

of thin shells can be used.

2.1.2. Mindlin's thick plate theory

When dealing with thick plates other theories should
be employed. Lamb wave theory is an 'exact' the-
ory for thick plates. The computation, however, is a
bit cumbersome, requiring an implicit iteration in a
search for vanishing determinants. A good compro-
mise, which allows an explicit expression of Young's
modulus, is Mindlin's theory of thick plates. Following
Rose et al. [2] (Eq. 52b) the de�ection of a thick plate
due to a point excitation (i.e. the Green's function) is
given by

Φ (x, y, x0, y0) =

1

4D

(
H

(1)
0 (k1r)

(k21 − k22) γ1
− H

(1)
0 (k2r)

(k21 − k22) γ1

)
(5)

where D is the dynamic sti�ness, k1 and k2 are
the pertinent roots (wavenumbers) representing ei-
ther traveling or evanescent waves, respectively (in
the latter case, k2 is an imaginary number), and γ1
is some (frequency and wavenumber dependent) scal-
ing factor. Thus for the purpose of this paper it is
su�cient to consider the following two fundamental
functions for the computation of the optimal projec-
tion by means of Eq. 2, contained in a matrix Φ:

Φ =
[
H

(1)
0 (k1r) H

(1)
0 (k2r)

]
(6)

where k1 is a real-valued wavenumber (the propagat-
ing part) and k2 is an imaginary-valued wavenumber
(the evanescent part).
Actually, when comparing this result with the

Green's function that were given in the previous sec-
tion, Eq. 1, we see that the test functions contained
in Φ are the same. There is only one subtle di�er-
ence, in that in Eq. 1 the evanescent wavenumber is
the same in magnitude as the propagating wavenum-
ber, whereas in Eq. 5 they can (and generally will
be) di�erent (k1 and k2). In the following section, the
evanescent and propagating wavenumbers are allowed
to be di�erent in magnitude.
If needed, the matrix Φ can be extended by a cou-

ple of propagating and evanescent waves emanating
from re�ecting boundaries using an image source ap-
proach (see [1] for more details). Next, the optimal
wavenumber pair (propagating and evanescent) can
be searched for using Equation Eq. 2 and minimizing
Eq. 3.
The complex valued Young's modulus EMindlin can

be estimated from the �tted value for k1 using the
formula [3]

EMindlin = (A±B)ρ(1− ν2)v2fit/2 (7)

with

vfit = ω/k1 (8)

κ = (0.87 + 1.12ν)/(1 + ν) (9)

A = 1 + 2(1 + ν)/κ(1 − ν2) + 12v2fit/d2ω2 (10)

B =
√
A2 − 8(1 + ν)/κ(1 − ν2) (11)

where ν is Poisson's ratio, ω is the radian frequency,
and d is the thickness of the plate.

2.2. Dealing with excitation along a line
(knife excitation)

Knife excitation is sometimes used with the idea
to generate plane waves. Although this can only be
achieved within a limited number of wavelengths from
the source, it is often being done by experimental
physicists.
A line excitation (con�guration 2; see Figure 3) can

be approximated by a sum of point sources, located
on this line and acting 'in phase'. Thus the Green's
function Φ, in case of Kirchho�'s thin shell theory, is
constructed as follows

Φ =

[
N∑
i=1

H
(1)
0

(
k1

√
(x2i + y2)

)
N∑
i=1

H
(1)
0

(
k2

√
(x2i + y2)

)]
(12)

where the line excitation is represented by N discrete
points with coordinates xi, i=1...N and y is the dis-
tance from the point of excitation on the line of sym-
metry.
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Foam D10mm, pointload Z=0cm, complex Hankel, prop, real evansc
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Figure 4. k−ω spectrum of point excited slap (Figure 2),
2.5mm thick (top) and 10mm thick (bottom). Color im-
age k−ω spectrum obtained by measn of classical spatial
Fourier transform. Solid lines obtained by means of com-
plex wavenumber �t including propagating and evenescent
waves (real part of k shown only).

3. Fit results

As the 'measurement' data was created numerically
by means of a �nite element model, the material
properties are known a priori (see Table I). The ma-
terial properties are obtained by �tting the vibra-
tional 'measurement' data using Mindlin's theory as
described in Section 2.1.2. The vibrational 'measure-
ment' data were computed for a number of points lo-
cated on the line of symmetry (indicated by a dash-
dotted line in Figures 2 and 3)
Figure 4 shows a color image of the k−ω spectrum

of the point excited slap (Figure 2), 2.5mm thick and
10mm thick, as obtained from the 'measurement' data
by means of a classical spatial (1D) Fourier transform.
The real part of the �tted wavenumber, using the the-
ory given in Section 2.1.2, is shown in this �gure as a
solid curve as well.
Figure 5 shows the real part of the �tted (propagat-

ing) wavenumber as function of frequency. The thick
cure shows the �t result based on Mindlin's theory,
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Figure 5. Real part of the wavenumber as function of fre-
quency, for a point excitated slap (Figure 2), 2.5mm thick
(top) and 10 mm thick (bottom). Thick blue cure shows
the �t result based on Mindlin's theory. Thin curves give
the real part of the wavenumber according to Lamb the-
ory, Mindlin theory and Kircho� theory for the nominal
material properties.

searching in complex propagating wavenumber do-
mains and real evanescent wavenumber domain (thus
in 3 dimensions). The thin curves give the real part
of the wavenumber as function of frequency according
to Lamb theory, Mindlin theory and Kircho� theory,
for a slab with the (a prior known) nominal material
properties as mentioned in Table I. It is clear that the
�t procedure gives wavenumber results that follows
the nominal curve for Mindlin's theory. From the �g-
ure it can also be seen that Lamb theory and Mindlin's
theory are relatively close to each other, with devia-
tions of less than 2% up to 1000 Hz (thickness slab 10
mm; see bottom graph in Figure 5). Kirchho�'s theory
gives largely di�erent results, especially for thick slabs
and higher frequencies. Clearly Kirchho�'s thin shell
theory is not adequate for the slabs and frequency
range that were studied in this paper.
Figure 6 shows the Young's modulus and the loss

factor according to Mindlin's theory (i.e. using the
complex valued wavenumber �t results and Eq. 7) for
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Figure 6. Point excitated slap (Figure 2), 2.5mm thick,
Young's modulus (top) and loss factor estimate (bottom)
based on Mindlin's theory. Blue curve: complex Hankel �t
without evenscent wave component, Red curve: complex
Hankel �t with evenscent wave component.

a slab of 2.5 mm thickness. The loss factor is com-
puted as the ratio of the imaginary part of the Young's
modulus over the real part of the Young's modulus.
In this �gure the resulting Young's modulus and loss
factor are also shown in case the evenescant waves
are not considered. From this �gure it can be con-
cluded that the inclusion of evanescent wavenumbers
for the computation of the projected vibrational �eld
(Eq. 2) and to minimize the projection error e (Eq.
3) is important in order to obtain a certain degree of
accuracy.
Figure 7 shows the Young's modulus and the loss

factor according to Mindlin's theory (i.e. using the
complex valued wavenumber �t results and Eq. 7) for
a slab of 10 mm thickness, point excited at the top
edge. The conclusions are similar: evanescent waves
should be included in the search for an optimal pro-
jection of the 'measurement' data.
Figure 8 shows a color image of the k−ω spectrum

of the line excited slap (Figure 2), 10mm thick, as
obtained from the 'measurement' data by means of a
classical spatial (1D) Fourier transform. The real part
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Figure 7. Point excitated slap (Figure 2), 10mm thick,
Young's modulus (top) and loss factor estimate (bottom)
based on Mindlin's theory. Blue curve: complex Hankel �t
without evenscent wave component, Red curve: complex
Hankel �t with evenscent wave component.

of the �tted wavenumber, using the theory given in
Section 2.1.2, is shown in this �gure as a solid curve as
well. Again, a complex valued propagating wavenum-
ber was searched for, as well as a (real valued) evanes-
cent wavenumber (thus searching in 3 dimensions), to
minimize the error e in Eq. 3.

Figure 9 shows the Young's modulus and the loss
factor according to Mindlin's theory (i.e. using the
complex valued wavenumber �t results and Eq. 7)
for a line-excited slab of 10 mm thickness. The �g-
ure shows �t results in which the �rst-order re�ec-
tion from the top edge is taken into account, for both
the propagating (complex) waves and the evanescent
waves. Not taking into account the re�ection and / or
the evanescent waves reduces the accuracy of the �t
results.

4. CONCLUSIONS

Using numerically computed vibrational responses of
a slab of porous material with various thicknesses the
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Figure 8. k − ω spectrum of knife excitated slap (Fig-
ure 3), 10mm thick. Color image k − ω spectrum ob-
tained by means of classical spatial Fourier transform.
Solid lines obtained by means of complex wavenumber �t
including propagating and evanescent waves, as well as
re�ected propagating and re�ected evanescent waves from
the clamped top edge (real part of k shown only).

validity of the wave correlation approach based on
Hankel functions, combined with Mindlin's thick plate
theory was veri�ed. The approach works well for point
excited slabs as well as line excited slabs. In the latter
case, the line excitation is approximated by means of
an array of in-phase point excitations. The re�ection
from the edges of the slab is accounted for by means
of an image source model. The �rst order re�ections
from the edges appeared to be su�cient for the type
of slab and frequency range studied.

The optimal wavenumber was search for in 3 di-
mensions, considering a complex valued propagating
wavenumber and a real valued evanescent wave num-
ber. Because of this 3D search, this approach requires
a large amount of computation time. It appears that
the inclusion of evanescent waves are required in order
to obtain a better accuracy of the estimated Young's
modulus and loss factor.

It was found that at higher frequencies and thicker
slabs Kirchho�'s thin shell theory is clearly insu�-
cient. It was also found that for the frequency range
and thicknesses studied, Mindlin's plate theory and
Lamb wave theory are not very much di�erent (er-
ror in wavenumber less than 2% for frequencies up to
1000 Hz and thicknesses up to 10 mm).

From a theoretical point of view it is interesting
to see that the Green's functions are the same for
Kirchho�'s thin shell theory and for Mindlin's thick
shell theory. Thus the wave correlation approach uses
the same Green's functions in both cases. However,
for the computation of the e�ective Young's modulus
and loss factor of the slab, a choice must be made to
use either Kirchho�'s theory or Mindlin's theory.
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Figure 9. Knife excitated slap (Figure 2), 10mm thick,
Young's modulus (top) and loss factor estimate (bottom)
based on Mindlin's theory. Blue curve: complex Hankel
multiple point source �t without evenscent wave compo-
nent, Red curve: complex Hankel multiple point source �t
with evanescent wave component.
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