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Summary
The asymptotic homogenization method is applied to complex dielectric two-phase fibrous compos-
ites. Under continuity conditions at the interfaces, we derive closed-form formulas for the complex
dielectric effective tensor in the case of isotropic non-overlapping circular inclusions embedded in an
isotropic square matrix. These formulas are given in terms of a symmetrical matrix which facilitates
the implementation of the computational scheme, and are advantageous for estimating gain and loss
enhancement properties of active and passive fibrous composites. Numerical computations are per-
formed in order to find the regions where enhancement properties are guaranteed. This study may
be of interest in the context of metamaterials.

PACS no. 41.20.Jb, 46.15.Ff

1. Introduction

The fundamental problem of finding the overall be-
havior of such heterogeneous media in material sci-
ences has been intensely investigated during the last
few years. For instance, in [1], based on the asymptotic
homogenization method and solving the correspond-
ing local problems using Weierstrass elliptic functions,
a simple analytical expression is derived for the ef-
fective complex conductivity of a periodic hexagonal
arrangement of conductive circular cylinders embed-
ded in a conductive matrix, with interfaces exhibiting
capacitive impedance. In [2], based on series expan-
sions of Weierstrass ζ-function and its derivatives, ef-
ficient formulas are obtained for computing the effec-
tive complex permittivity tensor of two-dimensional
periodic dielectric composites consisting of an arbi-
trary doubly periodic array of identical circular cylin-
ders in a homogeneous matrix. The results of [2] have
been applied in [3], to acoustics showing a good agree-
ment with experimental results and inertial enhance-
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ment. In [4], the results of [2] are used for calculate
eddy current losses in soft complex magnetic compos-
ites. A complex variable method is also developed in
[5] to evaluate the transverse effective transport prop-
erties of composites with a doubly-periodic fiber array.
The obtained complex variable solution is derived in
an unified form for the arbitrary doubly periodic fiber
array, and different fiber-matrix interfaces, i.e., per-
fect interface, contact resistance interface and coating.
Here, the study of the effective behavior of complex
dielectric composites is done by the homogenization
of the equivalent system of equations with real coeffi-
cients. By using previous results [6], closed-form for-
mulas for the effective coefficients are obtained and
employed to study gain-enhancement (GE) and loss-
enhancement (LE) properties of the homogenized ma-
terial. The closed-form formulas are explicitly given
and depend on a 2n0 × 2n0 symmetric matrix, where
n0 indicates the truncation order. Particularly, a para-
metrical study is done in order to find the regions
where enhancement properties are guaranteed by us-
ing the sufficient conditions given in [7]. Within the
realm of metamaterials the results of this study maybe
useful as in [8].
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Figure 1. (Left) A blow-up domain contained in Ω showing
(Center) a FRC type of geometry in global coordinates.
(Right) Square unit cell in y-coordinates.

2. Problem statement

Let us consider a fiber-reinforced composite with
cross-section Ω ⊂ R2 and sufficiently smooth bound-
ary ∂Ω. Let ε be a small geometric parameter char-
acterizing the micro-structure so that, the scaled lo-
cal or fast coordinates y = x/ε are introduced where
x = (x1, x2) represent the global or slow coordinates.
The periodic square unit cell cross-section is Y ⊂ R2,
where Y1 and Y2 denote the matrix and the circular
fiber of radius R, respectively (Fig. 1).

We assume that the constituents Ωε1 and Ωε2 of
the composite medium represent two materials that
have different electric permittivity properties κ(α)

(α = 1, 2). The electric potential uε in Ω satisfies the
Maxwell’s equation in the quasi-static approximation
in absence of free conduction currents in Ωε1 and Ωε2,
together with continuity of electric potential and nor-
mal component of electric displacement field across
the interface Γε.

∂

∂xj
(κεjl

∂uε

∂xl
) = 0 in Ω \ Γε, (1a)

JuεK = 0 on Γε, (1b)
s
κεjl

∂uε

∂xl
nj

{
= 0 on Γε, (1c)

uε = ũ on ∂Ω, (1d)

where nj is the j-th component of unit normal vector
to Γε in the direction from Ωε1 to Ωε2. The notation J.K
is used to denote the jump of the enclosed function
across the interface Γε in the n direction. The function
u0 is prescribed on the boundary ∂Ω.

Consider that the complex electric potential uε is
given by uε = ϕε + iψε with i2 = −1, and that
the components of the complex dielectric permittivity
tensor κε are κεjl = αεjl + iβεjl (j, l = 1, 2). The real
functions αεjl and β

ε
jl, are assumed to be piecewise dif-

ferentiable, rapidly oscillating and εY -periodic in the
local variable y. For each x ∈ Ω, these functions are
defined as αεjl (x) = αjl

(x
ε

)
, and βεjl (x) = βjl

(x
ε

)
. In

addition, the following symmetry and positivity con-

ditions are imposed,

αεjl = αεlj , βεjl = βεlj (2a)

αεjl (x) ajal ≥ κ ajaj (2b)

where κ > 0 is a constant and a = (a1, a2) is an
arbitrary real vector.

The complex dielectric problem (1a)-(1d) can be
equivalently rewritten as two-coupled real partial dif-
ferential equations

∂

∂xj

(
Aεjl

∂U ε

∂xl

)
= 0 in Ω \ Γε, (3a)

JU εK = 0 on Γε, (3b)
s(
Aεjl

∂U ε

∂xl

)
nj

{
= 0 on Γε, (3c)

U ε = Ũ on ∂Ω, (3d)

where U ε = (ϕε, ψε)
T , Ũ = (ũ1, ũ2)

T and 0 = (0, 0)
T

is the null vector of R2. The matrix Aεjl has compo-
nents

Aε11 = αε, Aε12 = Aε21 = −βε, Aε22 = −αε, (4)

where αε and βε are 2× 2 matrices with components
αεjl and β

ε
jl, respectively.

3. Asymptotic homogenization proce-
dure

Following [9], an asymptotic solution of (3a)–(3d) is

U ε (x) = U (0)(x) + εNk(y)
∂U (0)(x)

∂xk
, (5)

with

U (0)(x) =

(
ϕ(0)(x)
ψ(0)(x)

)
, Nk(y) =

(
wk(y) gk(y)
ζk(y) ξk(y)

)
.

The 2 × 2 matrix of functions Nk(y) are Y -periodic
solutions of the local problems

∂

∂yj

(
Ajl

∂Nk

∂yl
+Ajk

)
= O in Y \ Γ, (6a)

JNkK = O on Γ, (6b)
s(
Ajl

∂Nk

∂yl
+Ajk

)
nj

{
= O on Γ, (6c)

〈Nk〉 = O, (6d)

where O denotes the 2 × 2 null matrix and the an-
gular brackets represents the volume average per unit
length over the unit cell. In particular, the effective
coefficients are given by

Âjk =

〈
Ajk(y) +Ajl(y)

∂Nk(y)

∂yl

〉
. (7)

The local problems defined in (6a)-(6d) for the un-
known local functions ωk, ζk, and for gk and ξk, are
equivalent through the transformation ωk = ξk and
ζk = −gk.
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3.1. Isotropic case

Consider that αεjl = αεδjl and βεjl = βεδjl, where α
and β are piece-wise functions. Then, the local func-
tions wk,ζk and gk, ξk are Y−periodic solutions of
the following cell problems I k (k = 1, 2),

∆gk = 0, ∆ξk = 0 in Y \ Γ, (8a)
q
gk

y
= 0,

q
ξk

y
= 0 on Γ, (8b)

s(
α
∂ξk

∂yl
+ β

∂gk

∂yl

)
nj

{
= − JαKnk on Γ, (8c)

s(
β
∂ξk

∂yl
− α∂g

k

∂yl

)
nj

{
= − JβKnk on Γ, (8d)〈

gk
〉

= 0,
〈
πk
〉

= 0. (8e)

Furthermore, the related effective coefficients are

α̂jk =

〈
αεδjk + βε

∂gk

∂yj
+ αε

∂ξk

∂yj

〉
, (9)

β̂jk =

〈
βεδjk − αε

∂gk

∂yj
+ βε

∂ξk

∂yj

〉
. (10)

In particular, α̂ = α̂11 = α̂22, β̂ = β̂11 = β̂22 and
α̂jk = β̂jk = 0 for j 6= k.

3.2. Solution of the local problem Ik

Let us consider a square lattice of inclusions of radius
R and period equal to 1. Doubly-periodic harmonic
function that satisfies the given interface conditions
and the null average condition over the unit cell is
sought. Then, the following infinite system of alge-
braic equations is obtained(
I + (−1)k+1χαW

k
)
Ã
k

+
(
χ+
βαI

+ (−1)k+1χ−βαχαW
k
)
B̃
k

= (−1)k+1V 1, (11a)(
χ+
βαI + (−1)k+1χ−βαχαW

k
)
Ã
k

−
(
I + (−1)k+1χαW

2
)
B̃
k

= (−1)k+1V 2. (11b)

where I denotes the infinite identity matrix, Ã
k

=

(ãk1 , ã
k
3 , . . .)

T , B̃
k

= (b̃k1 , b̃
k
3 , . . .)

T , akq = ãkqR
q/
√
q,

bkq = b̃kqR
q/
√
q, V 1 = (χαR, 0, . . .)

T , V 2 =

(χ−βαR, 0, . . .)
T and

W k =

(−1)k+1πR2, p+ q = 2
∞ o∑
p=1

√
pqηkpqR

p+q, p+ q > 2,

with

ηkpq =

{
(−1)k+1π, p+ q = 2,
(p+q−1)!
p!q! Sp+q, p+ q > 2,

and Sj are the reticulated sums. The matrices W k

are real, symmetric and bounded, and consequently

the classical results from the theory of infinite systems
can be used to solve (11a)-(11b). Moreover,

χα =
JαK

α(1) + α(2)
, χ+

βα =
β(1) + β(2)

α(1) + α(2)
and

χ−βα =
JβK

α(1) + α(2)
.

4. Results and discussion

Here we consider a composite with dissipative con-
stituents, i.e. β(1) > 0 and β(2) > 0, and study the
LE properties of the homogenized material. That is,
the goal is to obtain β̂ such that

β̂ > max(β(1), β(2)). (12)

The dual process of GE arising from active con-
stituents induce to an equivalent scenario [7]. In [7],
the following sufficient condition for LE was found,

lim
V2→0

dβ̂
dV2

> 0 if β(1) ≥ β(2),

lim
V2→

π
4

dβ̂
dV2

< 0 if β(1) ≤ β(2).

(13a)

From (13a), LE is guaranteed for all values of β(1) > 0
and β(2) > 0 when β1 = β2.

Using the results of the previous sections the effec-
tive real and imaginary parts of the effective dielectric
coefficient are given by

α̂ = α(1) − (−1)k+12π
(
α(1)ak1 + β(1)bk1

)
, (14a)

β̂ = β(1) − (−1)k+12π
(
β(1)ak1 − α(1)bk1

)
. (14b)

Following [6], we found short-formulas for α̂ and β̂,
by truncating the infinite system (11a)-(11b), i.e.(

Ã
k

n0

B̃
k

n0

)
=
(
(−1)k+1θIn0

+Wk
n0

)−1
Re2n0

, (15)

where the sub-index n0 ∈ N represents the truncation
order of the vectors Ã, B̃ and e, and the matrices I
and Wk, which are given by

I =

(
I Θ
Θ I

)
and Wk =

(
W k Θ

Θ W k

)
. (16)

Furthermore the matrix θ is

θ =

(
θ11 θ12
−θ12 θ11,

)
(17)

where

θ11 =
χα + χ−βαχ

+
βα

(χα)2 + (χ−βα)2
and θ12 =

χαχ
+
βα − χ

−
βα

(χα)2 + (χ−βα)2
.

In [6], we also prove that the problems I k (k =
1, 2) are equivalent. Then, in the further analysis we
set k = 1. Now, by fixing n0 = 3 and identifying the
components of the matrix W 1 with w1

pq, the linear
system (15) is rewritten as
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

ã11
ã13
ã15
b̃11
b̃13
b̃15

 =


θ11 + w1

11 w1
13 w1

15 θ12 0 0
w1

13 θ11 + w1
33 w1

35 0 θ12 0
w1

15 w1
35 θ11 + w1

55 0 0 θ12
−θ12 0 0 θ11 + w1

11 w1
13 w1

15

0 −θ12 0 w1
13 θ11 + w1

33 w1
35

0 0 −θ12 w1
15 w1

35 θ11 + w1
55



−1
R
0
0
0
0
0

 . (18)

Figure 2. Domain D = [0.025, 6.8] of β(1) where loss-
enhancement properties are present for the effective ma-
terial.

By solving the linear system (18) we find ã11 and
b̃11, and consequently, the effective coefficients given
in (14a) and (14b). Expression (18) is useful in the
analysis of LE properties since the sufficient con-
ditions (13a) can be easily evaluated. Particularly,
we consider a periodic composite where the dielec-
tric properties of the cylinders are characterized by
κ(2) = 9.4(1 + 0.006i) [8]. On the other hand, we
assume that κ(1) = 1 + β(1)i is the dielectric con-
stant related to the matrix, and make a parametrical
study by varying β(1) in such a way that LE proper-
ties are guaranteed in the effective material. In Fig.
2 we show the domain D = [0.025, 6.8] in which loss-
enhancement properties for the homogenized material
is achieved. That is, when β(1) ∈ D the inequality (12)
is valid. The number Vp = π/4 denotes the percolation
limit where the cylinders are in contact. In Fig. 3 we
show this fact by taking several values of β(1) in the
interval D. It is noted that while we move from the
left of the interval D to the right, the maximum value
of the effective coefficient β̂ move from the right to the
left with respect to V2 (volume fraction of the fibers).
As it is remarked in [8], in low-loss periodic structures,
the imaginary part of the effective dielectric constant
is small as compared to its real part. From our analy-
sis this result is reached for all fiber volumes in [0, π/4]
when β(1) ≤ α(1) (see Fig. 4). However, in the domain
D where LE properties are guaranteed, we found that
max(β̂) < max(α̂). For instance, we show this fact by
taking the end point of the interval D (see Fig. 5).

5. Conclusions

In this work, closed-form formulas for the real and
imaginary parts of effective coefficients of complex di-
electric composites are derived. The analytical formu-

las obtained are used to estimate composites whose
macroscopic answer exceeds those of the individual
constituents. These results may be of interest in the
context of metamaterials as in [8] where a similar com-
posite was studied.
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Figure 3. Imaginary part of the effective dielectric coefficient plotted for β(1) spanning six equal space points of the
interval D with respect to fiber’s volume fraction.
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Figure 4. Note that α̂ << β̂ for κ(1) = 1 + 0.025i and κ(2) = 9.4 + 0.0564i.
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Figure 5. Here max(β̂) < max(α̂) for κ(1) = 1 + 6.8i and κ(2) = 9.4 + 0.0564i.
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