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Summary 

Hearing-aid users have reported an increased satisfaction since digital technology and advanced 

signal processing became available in hearing aids. However, many users still experience 

difficulties in noisy environments and in complex listening scenarios. Although numerous 

parameters can be adjusted to provide an individualized hearing solution, hearing-aid fitting 

currently consists of: 1) the gain prescription and adjustment based on the pure-tone audiogram, 2) 

the activation of advanced features on-demand, such as beamforming and noise reduction. In a 

previous study [1], a novel approach for auditory profiling was suggested, where the hearing deficits 

were characterized according to two types of distortion. This allowed the classification of  listeners 

into four auditory profiles according to a high/low degree of hearing distortions along the two 

dimensions. The aim of the present study was to evaluate different hearing-aid compensation 

strategies that may fit the needs of different auditory profiles via technical measures. A hearing-aid 

simulator, consisting of beamforming, noise reduction, and dynamic range compression, was used 

to test which parameter spaces and outcome measures may be of interest for a “profile-based 

hearing-aid fitting”. The simulator consists of two dummy behind-the-ear hearing aids and off-line 

sound processing performed on a personal computer. Technical measures, such as signal-to-noise 

ratio (SNR) improvement, envelope degradation, and a metric of spectral distortions, were used to 

evaluate the effects of different signal processing strategies on the signal at the output of the 

simulator. Several parameter settings were evaluated using speech in the presence of various 

interferers at different SNRs. Here, the results of this technical evaluation are presented and 

discussed, with a view towards identifying the effective compensation strategies for different 

auditory profiles. 
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1. Introduction 

Satisfaction reported by hearing-aid users has 

increased significantly since digital technology 

became available [2]. This can be attributed to the 

ability of modern hearing aids (HAs) to deliver 

non-linear amplification as well as advanced signal 

processing features, such as beamforming and noise 

reduction. However, many HA users still 

experience difficulties in understanding speech in 

noisy environments and other complex listening 

scenarios.  

 

While numerous parameters can be adjusted to 

provide an individualized hearing solution, current 

hearing-aid fitting procedures are relatively simple.  

Usually, frequency and level dependent gain is first 

determined based on the listener’s pure-tone 

sensitivity, i.e., the audiogram. Subsequently, 

advanced features, including algorithms like 

beamforming and noise reduction, may be activated 

depending on personal preferences. Importantly, 

the fitting procedure does not take supra-threshold 

performance, e.g., measures of the listener’s 

performance at moderate sound levels and in 

complex environments, into account. Therefore, 

listeners with similar audiograms receive similar 

fitting solutions. The individual listener’s needs are 

addressed during fine tuning, which depends solely 

on the audiologist’s skills and experience. Given 

the nonlinear nature of many hearing-aid 

algorithms and their interactions, the design of 

individualized compensation strategies can be a 

complex task. This complexity is further increased 

by a broad range of sound scenarios encountered by 

individual HA users as well as inherent variability 

in a given individual’s responses. 

 

Evaluating a listener’s supra-threshold 

performance requires tools beyond the pure-tone 

audiogram. The listener’s performance may be 

estimated using a test battery and individual data 

can then be used to quantify the degree of 

perceptual distortions perceived by each listener. 

Recently, a data-driven approach to characterize 

individual listeners’ hearing along two dimensions 

has been proposed  [1], where each dimension 

represented an  independent type of supra-threshold 

distortions. Each listener was assigned one of four 

possible auditory profiles defined by their degree of 

perceptual distortions in the two dimensions. It is 

reasonable to assume that the most efficient 

compensation of a given hearing loss depends on 

the type of auditory distortions present, such as the 

ability to perceive the temporal and spectral 

features of sounds.  Hence, a “profile-based” HA 

fitting would ideally activate algorithms that can 

compensate for the specific types of distortions 

present in each listener. In order to approach this 

ideal scenario, a technical characterization of how 

modern HA features can affect specific distortions 

in the physical signal should be obtained first. Such 

a characterization was the aim of the present study 

to help define feature combinations that are adapted 

to different auditory profiles.   

 

A profile-based HA parameter space may require 

different directionality, noise reduction, and 

compression settings. Although the two first types 

of strategies aim for signal-to-noise ratio (SNR) 

improvement, directionality applies a spatial 

filtering that keeps the signal in front unaltered 

while noise reduction applies spectral filtering on 

the noisy mixture. The effects of noise reduction 

and directionality on speech-in-noise perception 

have been a topic of interest in previous studies [3, 

4]. Furthermore, the influence of the parameters 

used in dynamic range compression [5, 6] has been 

broadly studied. The characteristics of these 

processing algorithms in isolation have also been 

assessed by means of technical measures, such as 

speech intelligibility prediction or physical 

measures of the acoustic signal [7, 8], which do not 

require the participation of a listener. The present 

study is inspired by the approaches used in these 

previous studies and focuses on characterizing the 

effects of the HA algorithms on established metrics 

reflecting distortions in the physical signal. 

 

In the literature, the SNR improvement and other 

physical measures at the output of real hearing aids 

have been explored in connection to speech-in-

noise perception [9] as well as perceived quality 

measurements [10]. In this context, speech 

intelligibility prediction models and speech quality 

models are commonly used to quantify the expected 

performance of specific algorithms [8, 11]. While 

these objective measures may correlate with the 

observed perceptual performance of normal-

hearing listeners, there is no guarantee that hearing-

impaired listeners would exhibit the same behavior. 

Therefore, in the present study, such model-based 

objective performance measures were 

complemented with technical metrics related to 
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SNR, spectral, and temporal signal distortions. The 

idea was to characterize how the combination of 

parameters in HA algorithms affects such metrics 

rather than predicting HA user performance. 

 

For this purpose, a hearing-aid simulator (HASIM) 

was designed and evaluated with a set of five 

objective metrics. The chosen physical measures 

were the segmental SNR and objective measures of 

temporal-envelope and spectral distortions. The 

objective speech intelligibility and quality 

measures used here were the short-time objective 

intelligibility (STOI) and the perceptual evaluation 

of speech quality (PESQ) [12, 13]. The main goal 

was to characterize the performance of each 

algorithm in isolation as well as their interaction in 

several sound scenarios. Additionally, it was of 

interest to identify the combinations of parameters 

that lead to the best/worst performance in terms of 

the five chosen metrics.  

 

 

2. Hearing-aid simulator (HASIM) 

The HASIM was implemented in MATLAB via the 

combination of three processing algorithms. As 

shown in Figure 1, the signal recorded from the 

frontal and rear microphones of a hearing aid was 

processed by a beamformer, a noise reduction 

algorithm and a wide-dynamic range compressor. 

2.1. Beamformer (BF) 

The BF provides an omnidirectional sum of both 

microphones and two polar patterns, a fixed 

unilateral BF and a binaural BF. To obtain the 

optimized beam-patterns for the two BF types, a 

head and torso simulator (HATS) was placed in the 

center of an anechoic room facing a speaker at 0 

degrees (distance 1.5 m). The impulse responses 

from the speaker to each of the four microphones 

were measured with a 5-s maximum length 

sequence (MLS) with a code length of 11 bit at a 

sound pressure level (SPL) of about 65 dB. This 

was repeated for loudspeakers situated in the 

horizontal plane for angles from 0 to 360 degrees 

with a resolution of 5 degrees. After the impulse 

responses were obtained, a linear filter was built for 

each microphone (front, rear) and optimized in a 

least-square sense to a predefined beampattern 

[14]. Optimization was performed only in the 

frequency region between 1 and 5 kHz. Below 1 

kHz, the front microphone signal alone was used as 

the output, and  above 5 kHz unilateral 

beamforming was applied. For the binaural BF, the 

four outputs of the left (L) and right (R) ear devices 

were processed in a similar fashion. This resulted 

in a diotic signal. However, the use of a diotic 

signal removes spatial cues that are important for 

localization and spatial separation in real 

environments. Therefore, to improve the 

acceptance of the binaural beamformer, a portion of 

the signal from the front microphone was added to 

each device. In this case, 85% of the processed 

signal and 15% of the front microphone was 

considered in the simulations. 

2.2. Noise reduction (NR) 

The noise reduction system was based on the spatial 

properties of two closely-spaced microphones and 

the assumption that the sounds of interest would be 

primarily located in front of the listener. From the 

 
 Figure 1: Diagram of the hearing-aid simulator (HASIM) 

including the sound scenarios tested and the objective measures 

considered in the study. Panels placed on the right briefly 

explain the different levels used for each stage. 
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two microphone signals, two first-order differential 

arrays (cardioids), pointing in opposite directions 

(towards the front and back), were created as 

described in [15]. Hereby, the front-facing cardioid 

primarily captured sounds in front of the listener 

(sound of interest) while the rear-facing cardioid 

primarily captured sounds behind the listener 

(noise). By comparing the power spectral density 

estimates of the two cardioids in each time-

frequency frame, a binary mask was created which 

determines if a given time-frequency tile mainly 

contains energy from the front or the back of the 

listener. The time-frequency mask was converted 

into a binary gain, which attenuates time-frequency 

tiles with more energy in the rear-facing cardioid 

compared to the front facing cardioid with a fixed 

amount of attenuation [15]. 

2.3. Dynamic range compressor (WDRC) 

The compressor consisted of a 15-band filterbank 

(0.1-10 kHz), a percentile estimator, and an 

amplifier with non-linear gain. The bandwidth of 

the filterbank was approximately one-third octaves 

for the eleven mid-frequency bands and half an 

octave for the four remaining upper and lower 

bands. The envelope of the individual bands was 

estimated based on the low-pass filtered squared 

signal. The envelope was then transformed to the 

logarithmic domain and passed through the 

percentile estimator that effectively controlled the 

time constants of the compression system. The 

output of the percentile was increased with a fixed-

rate attack time if the envelope was greater than the 

output. Similarly, the output of the percentile was 

decreased with a fixed-rate release time if the 

envelope was smaller than the output. The 

percentile estimator calculated the desired gain in 

the compressor input-gain function and was set for 

each of the compressor conditions. The amplifier’s 

gain function was a broken-stick nonlinearity with 

a single kneepoint used to set the insertion gain for 

conversational speech level (65 dB SPL). The 

upper and lower slopes of the function were 

calculated to match the target gains for soft (50 dB 

SPL) and loud (80 dB SPL) speech targets. The 

calculated gain was applied to the individual 

frequency bands based on the prescription rule 

corresponding to the individual pure-tone 

audiometric thresholds. The compressed output 

signal was formed by the sum of all bands [16]. 

                                                      

2 The SNR is referred to the tested device (left) only.  

3. Method 

3.1. Sound scenarios 

The sound scenarios used in the technical 

evaluation were recorded in an anechoic chamber 

with 24 loudspeakers placed in the horizontal plane, 

in steps of 15º, around a chair located in the middle 

of the chamber. A HATS was placed on the chair 

while wearing HA satellites consisting of a HA 

housing with a front and a rear microphone. The 

international speech test signal (ISTS) [17] was 

used as the target signal, which was recorded when 

played from the loudspeakers located at 0º and 90º 

degrees at 65 dB SPL. Two noises were used; the 

international female noise (IFN), a stationary noise 

with the same long-term average spectra (LTAS) as 

the ISTS [17],  and ICRA-6 [18], a fluctuating noise 

composed of the envelope of six talkers and the fine 

structure of a random noise. The two noise maskers 

were recorded from the two loudspeakers located at 

±45º. Additionally, two multi-talker noise 

environments were constructed using recordings of 

real conversations[19]. A 6-talker babble was 

recorded from loudspeakers located at ±15º, ±30º, 

and ±45º. A 24-talker babble was recorded by 

playing the speech of one independent talker from 

each of the 24 loudspeakers. 

 

The sound scenes were prepared by combining the 

signal from each of the microphones of the target 

signal and each of the sound environments. The 

conditions considered for each of the noise 

environments were: 

1. Target at 0º   and +4 dB SNR. 

2. Target at 90º and +4 dB SNR2. 

3. Target at 0º   and - 4 dB SNR. 

4. Target at 90º and - 4 dB SNR2. 

 

In addition, each of the sound scenes was 

constructed either with the target in phase (S0N0) 

or in antiphase (SπN0). This was done to enable the 

extraction of the target and the noise signals in each 

stage of the HASIM using the Hagerman-Olofsson 

separation technique [20]. 

3.2. Hearing-aid parameter spaces 

Each of the three HASIM stages was tested in a 

number of conditions. The BF was tested in three 

modes: Omni (O), Fixed (F), and Binaural (B). The 

NR algorithm was tested with attenuations of 5 
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(NR5), 10 (NR10), and 15 dB (NR15), as well as 

when the algorithm was deactivated (Off). The 

parameters of the WDRC adjusted in the 

simulations were the kneepoint (KP) and the time 

constants (TC). The KP was set at either 45, 52, or 

65 dB SPL. The TC were divided into ‘fast’ and 

‘slow’ options and tested with three levels in each 

case: 

1. Fast1:  Attack =   15 ms; Release =  50 ms.  

2. Fast2:  Attack =   10 ms; Release =  10 ms.  

3. Fast3:  Attack =     5 ms; Release =  10 ms.  

4. Slow1: Attack =   40 ms; Release = 400ms.  

5. Slow2: Attack = 100 ms; Release = 800ms.  

6. Slow3: Attack = 250 ms; Release = 1250ms.  

 

The compression ratio was determined by applying 

the NAL-NL2 [21] prescription rule to different 

audiometric profiles based on the proposed 

standard audiograms [22]. The audiometric 

thresholds of the audiograms N1, N2, N3, N4, S1, 

S2, and S3 were entered into the NAL-NL2 

software and the target gains at 50, 65, and 80 dB 

SPL were transferred to the compressor algorithm. 

Additionally, the 0-dB linear-gain condition was 

tested in order to explore the processing algorithms 

(BF and NR) in isolation. In total, 216 different 

parameter combinations (3 BF x 4 NR x 3 KP x 6 

TC) were tested per audiometric profile. 

3.3. Procedure 

The simulations were carried out in the same way 

for each of the sound scenarios and set of HA 

parameters. Once the sound scenario at the input of 

the frontal and rear microphones was constructed, 

the resulting signals were used as the input to the 

BF. As mentioned above, this was done for both the 

S0N0 and SπN0 versions of each sound scenario. 

After the BF stage, the resulting signal as well as 

the original signals from the frontal and rear 

microphones were input to the NR algorithm. The 

last stage was the WDRC which was fed with the 

signal obtained at the output of the NR. Once this 

was done, the reference signal for the evaluation, 

corresponding to the omni-directional and linear 

condition (OmLin), was obtained by performing a 

simulation in which the prescribed gain per 

frequency band corresponded to the long-term 

spectrum of the output signal. This was done in 

order to 1) minimize the effect of the spectral shape 

of the output signal for each audiogram and more 

clearly observe the effects of the WDRC 

parameters, and 2) reduce the effect of the input 

SNR. Moreover, using OmLin as a reference 

yielded a reference output signal that had been 

processed by the whole HASIM but was not 

influenced by the distortions and enhancements 

created by each algorithm. 

3.4. Objective measures 

The technical evaluation involved three physical 

measures of the acoustic signal. These were the 

segmental signal-to-noise ratio (segSNR) at the 

output of the HASIM, the log-likelihood ratio 

(LLR) between the unprocessed and processed 

signals, and the envelope distortion index (EDI) 

between the unprocessed target and the isolated 

target at the output of HASIM as defined in [6], [7]. 

Additionally, two performance measures were 

considered: STOI and PESQ. In both performance 

measures, the reference signal was the clean target 

from the OmLin condition and the test signal was 

the noisy speech at the output of HASIM.  

 

4. Results and Discussion 

The simulations were first carried out for the 

processing algorithms (BF & NR) and the fitting 

algorithm (WDRC) in isolation. A multi-way 

ANOVA for all the sound scenarios showed a 

significant effect of NR [F(3,191)=3.23, p=0.02]  

and BF [F(2,191)=9.73, p<0.01] on the segSNR but 

not their interaction, which was only significant on 

the LLR [F(6,191)=3.29, p<0.01]. In contrast, only 

BF had a significant influence on EDI 

[F(2,191)=171.8, p<0.001]. When comparing the 

different sound scenarios, NR had no effect when 

the noise was located in front, due to the 

inefficiency of the SNR estimation algorithm in 

such a setting. In contrast, for the 24-talker babble, 

BF had a significant effect on the three physical 

measures and NR affected segSNR and LLR 

significantly. In the following, only the results for 

the 24-talker babble scenario in its four conditions 

are reported and discussed. 

 

Figure 2 shows the changes in segSNR, EDI, and 

LLR scores, relative to the OmLin condition. The 

left panel shows the performance of BF and NR for 

different SNR and target location conditions. While 

the segSNR scores increased when BF and NR were 

activated and the target was located at 0º, the scores 

of the binaural BF (B) were 2.5 dB lower when the 

target was located at 90º. This was also observed in 

the EDI scores, which increased dramatically when 

the binaural BF was activated and the target was 

located at 90º. Furthermore, the LLR increased 
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when the algorithms were more aggressive, 

regardless of the target location. Moreover, the 

condition B and NR15 yielded the largest change in 

segSNR (5 dB) but also the highest amount of 

spectral distortion (>0.8). 

 

The right panel of Figure 2 shows the mean results 

for the different WDRC conditions (colored bars), 

the average results for positive and negative SNRs 

(shadowed bars), as well as the mean of each 

audiometric configuration (markers). In contrast to 

the results shown in the left panel, WDRC reduced 

the segSNR, particularly for the fast-acting 

compression settings. While the influence of KP on 

the EDI scores was small but significant 

[F(2,495)=18.9 p<0.001], there were large 

differences between the slow and fast-acting 

configurations [F(1,495)=1033.8, p<0.001]. The 

effective compression became more linear with 

increasing time constants (slow-acting) showing a 

reduced amount of distortions and a smaller SNR 

reduction. Therefore, the selection of fast-acting 

compression may counteract the SNR enhancement 

provided by the processing stages and can introduce 

additional distortions in the temporal envelope (i.e. 

higher EDI scores). When comparing the results for 

the individual audiometric configurations, the 

audiograms with a higher degrees of hearing loss, 

particularly at low frequencies (N3 and N4), led to 

even larger envelope distortions. On the other hand, 

the spectral distortions (LLR) introduced by the 

WDRC were much lower than the ones introduced 

by the processing algorithms (BF & NR).  

 

Figure 3 illustrates the differences in performance 

due to the combined effects of the BF, NR, and 

WDRC. Only the condition with the target in front 

 Figure 3: Objective performance measures (STOI and PESQ) 

of the HASIM with the target direction at 0º. Each result 

corresponds to a combination of the three algorithms. The 

magenta boxplots show results of the fast-acting compressor 

and cyan the slow-acting compressor. 

 
  Figure 2: SNR improvement (segSNR), envelope (EDI), and spectral distortions (LLR),  of the the HASIM algorithms in 

isolation. Left panel shows the beamformer (BF) and noise reduction (NR) for the different sound scenarios and Right panel the 

fitting algorithm (WDRC) for the different combinations of parameter kneepoint (KP=45,52 or 65 dB SPL) and time constants 

(TC=Fast or Slow in their three levels) for positive and negative SNRs as well as the mean of each audiometry. 
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was considered here, and the boxplots show the 

scores relative to the OmLin condition for all noise 

types and audiometric configurations. The results 

suggested a clear improvement of the STOI scores 

when BF was binaural and an additional 

improvement when NR was activated with the 

highest attenuation (NR15). One should note that 

the variance of the results of the fast-acting 

compression was higher than for the slow-acting 

HA configuration. This is mainly due to the slow-

acting compression linearizing the long-term 

response and acting as a gain reduction that does 

not affect the spectro-temporal features of the 

signal. However, fast-acting compression has 

different effects depending on the compression 

ratio applied, which depends on the audiometric 

thresholds. In contrast, the results for the PESQ 

metric did not show significant differences neither 

in terms of the mean values nor the variance. 

 

To test different profile-based compensation 

strategies, it is of interest to explore HA parameter 

spaces that differ widely from one another, not only 

in terms of performance, but also in terms of 

spectral and temporal distortions. Therefore, six 

HA parameter settings were chosen for that 

purpose. Figure 4 shows the average results across 

noise types, SNR conditions, and hearing profiles 

for these six settings. The normalized results of the 

five objective measures are shown for the 0º (left 

panel) and 90º (right panel) target condition. As 

expected, the HA setting with no processing 

activated and slow-acting compression (O-NRoff-

Slow) provided good scores for the distortion 

measures (i.e., EDI, and LLR), but slightly negative 

scores for the segSNR, STOI, and PESQ metrics. In 

contrast to the unprocessed HA setting, a HA 

setting with all the algorithms activated at their 

most aggressive level (B-NR15-fast) showed clear 

spectral and temporal distortions. In addition, B-

NR15-fast showed an improvement in SNR and 

STOI when the target was located in front but 

poorer scores when it was located at 90º. For the 

fourth HA setting (B-NR15-slow), this improvement 

was even higher and exceeded the unprocessed HA 

setting in all cases. The HA setting with moderate 

processing parameters (F-NR5) and slow-acting 

compression showed positive scores for both target 

directions, suggesting an improvement in speech 

intelligibility compared to most of the other HA 

settings considered here.  

 

5. Conclusions 

Several HA parameter spaces were characterized 

by using objective physical measures at the output 

of a HA simulator. While the processing algorithms 

(BF and NR) tended to enhance the SNR and 

introduce spectral distortions, fast-acting 

compression had a detrimental effect on SNR 

improvement and temporal distortion. Parameter 

spaces towards a profile-based HA fitting were 

proposed by choosing combinations of parameters 

that provided different results in terms of SNR 

benefit, physical distortions and performance 

predictors. Overall, a perceptual evaluation using 

these identified parameters spaces should provide 

meaningful differences among the different HA 

settings and may help in the implementation of a 

profile-based compensation of the hearing deficits. 

 

  Figure 4: Normalized scores in the five chosen objective measures for six HA parameter settings. Results are divided in low (mild) 

and high (sev) degree of hearing loss and by target direction. The results were normalized between the 10th and 90th percentiles. 

The normalized scores of EDI and LLE were multiplied by a factor (-1) so -1 always corresponds to a poor performance and 1 to a 

good performance. 
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