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Summary 

The precise calculation of the impulse response of an acoustic space, especially in the low 

frequency area below the Schroeder frequency, can be achieved with the application of the Finite 

Element Method in the Time Domain (FEMTD). Mesh size is one of the most important 

considerations when applying the FEMTD. A rule of thumb for mesh creation is that of λ/h=5 

where λ and h respectively denote wavelength of upper limit frequency and the maximum nodal 

distance. 

For this study, calculations of impulse response were performed in virtual 3d spaces with varying 

reverberation time. Varying mesh sizes were created for each case with maximum nodal distance 

of the mesh above and below the limit of λ/h=5.  Other considerations that were taken into account 

were the proper selection of source, accurate representation of the impedances of walls, time 

scales, stepping method and the type of elements. The correlation between the impulse response 

obtained with the smaller nodal distance size and the impulse responses obtained with higher 

nodal distance sizes was assessed. 

The results indicate that there is a decreasing correlation of the impulse responses over time 

compared with impulse responses obtained with appropriate mesh size. Also the results suggest that 

there is an association between appropriate mesh size and reverberation time in acoustic spaces for 

FEMTD calculations of impulse responses. 

Implications of the findings suggest that for impulse response calculation the preferred mesh size 

should be adaptable to the decay and reverberation time of a space in order certain accuracy to be 

achieved. 
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1. Introduction

1
 

An important consideration for Finite Element 

Method (FEM) and FEMTD is the correct 

implementation of meshes. Solutions to acoustic 

problems are wavelike. The waves are 

                                                     

 

characterized by a wavelength λ in space, whose 

value depends on the frequency and speed of 

sound c in the medium according to λ = c/f. This 

wavelength has to be resolved by the mesh. To 

represent a wave, it is obvious that the mesh 

elements must be smaller than the wavelength in 

order the wave to be resolved. That is, there needs 

to be several degrees of freedom per wavelength in  
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the direction of propagation. The smallest element 

side length that can be used is determined by the 

shortest wavelength, that is, highest frequency, to 

be analysed. 

Typically five or six elements are used [1, 2]. 

Schmiechen [3] states that two points per 

wavelength are strictly sufficient, but would not 

lead to accurate mode shapes so a  factor of three 

to five is advised. Wojcik [4] reports 

computational results with five percent error using 

nine and two percent error using 18 linear 

elements per wavelength. Harari [5] proposes 10 

nodes per wavelength or more similar to 

Thompson [6]. Zienkiewicz [7] states that ‘a rule 

of thumb’ which has been used for some time, is 

that there should be 10 nodes per wavelength. 

Marburg found that six elements per wavelength 

can provide acceptable accuracy [8] similar to 

Ihlenburg's comprehensive study on finite element 

error analysis [9]. In a similar fashion Otsuru 

tested the accuracy for the meshes in the field 

room acoustics for different elements [10].  He 

found that the condition λ/h > 4 assures successful 

interpolation of peaks in mode shapes and small 

errors in the eigenfrequency approximation. 

Previous work in the field of acoustics has focused 

on setting mesh restrictions for FEM mainly in the 

frequency domain. Few researchers have addressed 

the problem for correct mesh restrictions for FEM 

in the time domain [11], [12].   

In the following years FEMTD for the calculation 

of impulse responses of acoustic spaces could 

possibly become widely used in real life 

applications. The aim of our work is to further 

extend current knowledge and shed new light on  

mesh restrictions appropriate for the method.  

This study set out to explore the effect of mesh 

size for FEMTD. Calculations of impulse 

responses were performed in spaces with varying 

reverberation time and with varying mesh sizes. 

Taken together, the results suggest that there is an 

association between appropriate mesh size and 

reverberation time in acoustic spaces. The results of 

this research support the idea that for impulse 

response calculation via FEMTD the preferred 

mesh size should be adaptable to the decay and 

reverberation time of a space in order certain 

accuracy to be achieved.  

Chapter 2 is concerned with the FEM setup 

employed for this study while chapter 3 presents 

the findings of the research. Discussion section 

analyses the data gathered and addresses the 

research questions in turn. Our conclusions are 

drawn in the final chapter. 

2. FEM setup 

The linearized inhomogeneous wave equation is the 

form of the wave equation that was applied in this 

study. The finite element formulation is obtained by 

testing linearized inhomogeneous wave equation 

(Eq. 1) using the Galerkin method. The finite 

element formulation of the linearized 

inhomogeneous wave equation is presented in [13-

15]. By applying the FEM in the time domain the 

calculation of the impulse response of an acoustic 

space can be derived. 

 

 ∆𝑝 −
1

𝑐2

𝜕2𝑝

𝜕𝑡2
= −𝜌0

𝑑𝑄

𝜕𝑡
 (1) 

 

A Gaussian Pulse point source was used in this 

study. A Gaussian time profile is defined in terms 

of its amplitude A, its frequency bandwidth f0, and 

the pulse peak time tp [16, 17]. The spectrum of 

the pulse is similar to a low pass filter with the 

frequency bandwidth easily adjusted by controlling 

the width of the pulse. The governing equations 

(Eq. 2) were implemented in the Finite Element 

Analysis.  

 

𝑄 = −𝐴2𝜋2𝑓0
2(𝑡 − 𝑡𝑝)𝑒−𝜋2𝑓0

2(𝑡−𝑡𝑝)
2

 

𝑡𝑝 −
1

𝑓0
< 𝑡 < 𝑡𝑝 +

1

𝑓0
  

(2) 

In the finite element formulation, the modeling of 

the walls was carried out using the acoustic 

impedance. The wall impedance is a quantity 

which closely emulates the physical behavior of a 

wall. It is based on the particle velocity normal to 

the wall which is generated by a given sound 

pressure at the surface. Considering the incident 

condition of acoustic wave to the boundary 

surface, the normalized acoustic impedance of wall 

surfaces were calculated by substituting the 

random incidence absorption coefficient of the 

walls into the Eq. 3 [18, 19].   

 𝑍 = 𝜌0𝑐
1 + √1 − 𝛼

1 − √1 − 𝛼
 (3) 
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For the application of the FEM in the time domain 

an appropriate time step was chosen. The time step 

is dictated by the Courant–Friedrichs–Lewy (CFL) 

condition [20, 21]. The condition states that the 

time step must be kept small enough so that 

information has enough time to propagate through 

the space discretization. The principle behind the 

condition is that, for example, if a wave is moving 

across a discrete spatial grid and its amplitude at 

discrete time steps of equal duration is to be 

calculated, then this duration must be less than the 

time for the wave to travel to adjacent grid points.  

For the solution of the wave equation in the time 

domain with the use of finite elements, a time 

stepping method is necessary. The Generalized-α 

[22, 23] time stepping method was applied for this 

study. Finally the Lagrange 2nd-order tetrahedral 

elements were used in the finite element 

formulation. Shape functions can be found in 

Atalla [24]. 

 

3. Results 

Figure 1 displays an overview of impulse response 

calculations for the same 3d space with the 

application of different meshes. The wall 

impedances were selected in this case so that the 

resulting impulse response of the room is would be 

less than 0.3 sec. 

The meshes for the first two impulse responses 

that are presented in Fig.1 were created with the 

restriction λ/h<5. For the third impulse response 

calculated the restriction was λ/h=5 and finally in 

the last case the restriction was λ/h>5.  

The most important observation to emerge from the 

impulse response comparison in Fig.1 is that in 

cases 3 and 4, the impulse responses are identical. 

In the first two cases were the restriction follow 

λ/h<5 the impulse responses have differences 

compared with cases 3 and 4. In Fig.2 and Fig. 3 

there is a comparison of the impulse responses for 

the first two cases in comparison with the impulse 

response obtained with the mesh restriction λ/h=5. 

The results indicate, as expected, that the closer the 

condition λ/h=5 is satisfied, the closer the impulse 

response appears to be with the one calculated 

with the condition λ/h=5. Also in Fig.2 and 3 there 

is a trend of a decreasing correlation of the impulse 

responses over time. 

For the second set of calculations the wall 

impedances were altered in the same 3d space that 

was used in the previous calculations, resulting in 

less absorptive walls and with a room with a 

longer impulse response. Impulse responses were 

then calculated for two different mesh restrictions. 

The new calculations are presented in Figure 4. 

These results revealed that while the impulse 

responses in the initial stages are similar, the 

differences are increasing over time. There seems 

to be a steady decline of the impulse responses 

correlation even though the condition λ/h=5 is met. 

The next chapter, therefore, moves on to discuss the 

findings. 

 

4. Discussion 

The first question in this study sought to determine 

if the rule of thumb λ/h=5 is adequate for mesh 

creation for the FEMTD. Results presented in Fig. 

1 support this hypothesis. However results from 

the second set of calculations, presented in Fig.4 

showed that for longer reverberation time greater 

number of elements per wavelength is needed in 

order certain accuracy to be achieved. 

A second finding of this study is that the mesh 

restriction λ/h=5 will provide good correlation 

between calculated impulse responses in the early 

region of the impulse response but with an 

accuracy that is decreasing over time compared 

with impulse responses followed the restriction 

λ/h>5. The effect probably is going to be greater 

for acoustic spaces with longer reverberation 

times. 

Our experiments are consistent with previous results 

where FEMTD was applied for the calculation of 

the impulse response of an acoustic space [11], 

[12]. For these studies high values of the cross- 

correlation coefficient were estimated especially in 

the early time region of impulse responses 

calculated for nodal distances following λ/h=5 

compared with the measured impulse responses of 

the acoustic spaces. However results indicated that 

there is a decreasing step of the cross-correlation 

coefficient over time. 

A possible explanation for this might be, as Astley 

states [25] ‘small phase differences between the 

exact and computed solution may not contribute 

significantly to numerical error over a single 

wavelength but accumulate over many 

wavelengths to give a large global error’. This 

seems to explain why longer reverberation times 

provide greater deviation of the impulse responses 

over time. 

This study sets out to extend our knowledge of the 

correct application of meshes especially for the 

FEMTD. The results point to the likelihood that in 
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Figure 1 Impulse Response calculations in a 3d space with different meshes  (Mesh 1,2: λ/h<5, mesh 3:  λ/h=5, mesh 

4: λ/h>5)   
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Figure 2 Comparison of the Impulse Responses for different meshes (Blue: Mesh size, λ/h=3.5, Black: Mesh size, 

λ/h=5)   

 

Figure 3 Comparison of the Impulse Responses for different meshes (Blue: Mesh size, λ/h=4, Black: Mesh size, 

λ/h=5)   

 

 

Figure 4 Comparison of the Impulse Responses for different meshes (Blue: Mesh size, λ/h=5, Black: Mesh  size, 

λ/h=6)   
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order certain accuracy to be achieved, the mesh size 

should be adaptable to the reverberation time of the  

space. Hence spaces with greater reverberation time 

should require a greater number of elements per 

wavelength in the mesh.  

The implications of these findings are significant. 

Mesh restrictions imposed so far for FEM in the 

field of acoustics seems to be reasonable and 

provide good results but mainly for calculation in 

the frequency domain. For calculations in the time 

domain it appears that mesh requirements depends 

on the time duration of the impulse response. 

Longer impulse responses require smaller element 

size than the current restrictions proposed for 

more accurate calculations. 

The conclusions of the study should be treated with 

caution. More research on this topic needs to be 

undertaken before the association between mesh 

size and reverberation time is more clearly 

understood. The present study has only studied a 

cubic room. To develop a full picture of 

appropriate mesh restrictions for FEMTD, 

additional studies will be needed that explore 

rooms with variant shapes and variant absorptive 

and diffusive materials on the walls. These topics 

are reserved for future work. 

 
 
5. Conclusions 

We have performed impulse response calculations 

in virtual 3d spaces with varying reverberation 

time with the use of FEMTD. Taken together, the 

results suggest that there is an association between 

appropriate mesh size and reverberation time in 

acoustic spaces. 

Implications of the findings suggest that for 

impulse response calculation via FEMTD the 

preferred mesh size should be adaptable to the 

decay and reverberation time of a space in order 

certain accuracy to be achieved. In the light of 

these findings, we believe that our analysis may 

contribute to implementing appropriate mesh 

restrictions according to reverberation time when 

implementing FEMTD.  

The present study has studied a room with a cubic 

shape. To develop a full picture of appropriate 

mesh restrictions for FEMTD, additional studies 

will be needed. Our investigations into this area 

are still in progress and seem likely to confirm our 

hypothesis.  
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