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Abstract
In this study, the Linearised Euler Equations are coupled to the Linearised Potential Equation in
order to simulate sound propagation in complex non-uniform mean flows at a reasonable compu-
tational cost. The coupling technique is formulated in the frequency domain in a high-order finite
element framework. It consists in enforcing physical continuity conditions between the scalar velocity
potential and the linearised Euler state vector at the coupling interface. The performance of the
coupling is evaluated by simulating the sound radiation from an aeroengine exhaust with a strongly
non-uniform mean flow. The numerical results are successfully compared with a reference solution,
demonstrating that the coupling enables a proper representation of the acoustic and vorticity waves,
as well as the refraction of the sound field across the jet shear layer. Significant benefits in terms of
memory requirements and computational time are also obtained in comparison with the full linearised
Euler solution.

PACS no. 43.28.Js, 43.28.Py

1. Introduction

Sound propagation in complex non-uniform mean
flows is an important research area for transport,
building and power generation industries. In particu-
lar, the prediction of sound radiated from turbofan
engines is critical in the aerospace industry in order
to meet environmental regulations [1]. In rotating and
pulsating machines, the sound waves generated from
unsteady flows propagate in ducts and eventually ra-
diate through their openings. The presence of duct
discontinuities and complex mean flow effects strongly
influences the acoustic propagation [2].

The acoustic propagation in the presence of a mean
flow can be solved using several models, amongst
which the convected Helmholtz equation for uniform
flows [3] or the Linearised Potential Equation (LPE)
for irrotational flows [4]. These equations present the
advantage of solving a single unknown, yielding re-
latively low computational costs. However, they ac-
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count neither for the complexity of multidirectional
sheared flows and the refraction through shear layers,
nor for the vorticity/entropy waves and their interac-
tions [5]. These physical effects, of crucial importance
for acoustic propagation, are supported by the Line-
arised Euler Equations (LEE). But this more general
physical model is much more costly to solve numeri-
cally, since it involves up to five unknowns.

Solving the LEE in the time domain presents two
major drawbacks, namely the existence of physical li-
near Kelvin-Helmholtz instabilities due to the absence
of non-linear and viscous effects normally present in
real flows [6], and the complexity in modelling impe-
dance boundary conditions [7]. An alternative ap-
proach is to solve the LEE in the frequency domain
using the Finite Element Method (FEM). Further-
more, the computational cost can be reduced by sol-
ving the LEE using a high-order FEM approach [8].
This method, referred to as p-FEM in the following,
benefits from the use of high-order shape functions.
In addition, the FEM is known to suffer from numer-
ical instabilities in convection-dominated problems
due to a lack of diffusion in the formulation [9]. This
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can be corrected by adding artificial diffusion terms
such as in the Galerkin/Least-Squares (GLS) formu-
lation [10, 11]. Another important modelling aspect
is the choice of non-reflecting boundary conditions
for exterior noise propagation. The Perfectly Matched
Layer (PML) technique introduced by Bérenger [12]
for the absorption of electromagnetic waves is well
suited for this kind of problems: the wave amplitude
is gradually decreased in an additional layer through
an adequate change of coordinates into the complex
space, allowing to limit the spurious reflections into
the computational domain.

In this paper, an innovative approach is presented
in order to simulate the acoustic radiation from aero-
engine exhausts at a reasonable computational cost.
The main idea is to solve the LEE in the regions of
strong mean flow gradients, while applying the LPE
in the regions where the mean flow can be approxi-
mated as potential. For this purpose, coupling con-
ditions are defined at the interface between the LEE
and the LPE subdomains: the physical continuity of
the solution at the interface is ensured by expressing
the set of variables on each side of the interface in
terms of the other set of variables. In this study, a
stabilised axisymmetric form of the LEE is combined
with an axisymmetric LPE formulation. The coup-
ling methodology is first validated by simulating the
acoustic propagation in a duct and by computing the
numerical error with respect to a reference analytical
solution. The method is then applied to an aeroen-
gine exhaust test case with non-uniform mean flow: an
acoustic wave propagates through the exhaust nozzle
and radiates outside. A good agreement between the
LEE/LPE coupling solution and the full LEE refer-
ence solution is obtained. The benefits in terms of
computational costs are also demonstrated. The pa-
per is organised as follows. The model equations are
first presented in Section 2. Next, the high-order finite
element framework and the LEE/LPE coupling are
described in Section 3. The numerical results includ-
ing the validation of the coupling strategy are then
shown in Section 4. Finally, conclusions are drawn in
Section 5.

2. Physical Model

2.1. Linearised Euler Equations

The Navier-Stokes equations are written for a per-
fect gas with isentropic disturbances, no viscous ef-
fect, no heat transfer and no external source. The
Linearised Euler Equations are then obtained for the
time-harmonic perturbation vector q′, where the su-
perscript ′ indicates the small perturbations around
a steady mean flow. This variable vector includes
the fluctuations of the mass density ρ, the mo-
mentum vector ρu (u being the velocity vector) and
the non-dimensional pressure defined by Goldstein

pc = (p/p∞)(1/γ) (with p the pressure, p∞ a reference
pressure and γ the specific heat ratio) [13].

In this study, the cylindrical coordinates (r, θ, x) are
used. This coordinate system is convenient since mean
flows and geometries are often axisymmetric, leading
to a Fourier decomposition of the solution vector of
the following type:

q′(r, θ, x, t) = q′(r, x)e−jmθejωt, (1)

where q′ = [ρ′; (ρur)
′; (ρuθ)

′; (ρux)′; p′c], m ∈ Z is the
azimuthal order, ω is the angular frequency and t is
the time. The LEE thus write as:

L(q′) =

(
jω − j

m

r
Aθ +

1

r
Ac

)
q′

+
1

r

∂ rArq
′

∂r
+
∂Axq

′

∂x
= 0, (2)

where L(q′) is the differential operator for the LEE,
and Ar, Aθ, Ax and Ac are square matrices depend-
ent on the mean flow variables, namely: the mass dens-
ity ρ0, the speed of sound c0, the velocity vector u0,
and the pressure p0 [14].

2.2. Linearised Potential Equation

In the full potential theory, the velocity field u is ir-
rotational and can be written as the gradient of a
velocity potential φ of a fluid element traveling along
a streamline. The mean and fluctuating velocity com-
ponents thus read: u0 = ∇φ0 and u′ = ∇φ′. The LPE
follows:

ρ0
d0

dt

(
1

c20

d0φ
′

dt

)
−∇ · (ρ0∇φ′) = 0, (3)

where d0/dt = jω + u0 · ∇ is the material derivative.

2.3. Duct Modes

Duct modes form a complete basis for the duct
incident wave and are used to describe acoustic
sources [15]. For cylindrical ducts with uniform axial
mean flow velocity u0 = u0x , each duct mode can be
written as:

p′cm,n(r, θ, x) = am,nUm,n(r)e−jkxm,nxe−jmθ, (4)

where n ∈ N∗ is the radial order, am,n is the amp-
litude, Um,n is the radial shape function, and kxm,n is
the axial wavenumber. The radial shape function for
circular ducts depends on the mth-order Bessel func-
tion of the first kind and on the radial wavenumber
krm,n = αm,n/rd, where αm,n is the nth-zero of the
characteristic equation and rd is the duct outer ra-
dius [5, 15].
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Figure 1: Coupling configuration between two subdo-
mains.

3. High-Order Finite Element Model

The computational domain Ω is decomposed into two
subdomains, ΩLEE for the LEE subdomain and ΩLPE
for the LPE subdomain such that Ω = ΩLEE ∪ ΩLPE.
The subdomain boundaries are noted ΓLEE and ΓLPE,
with the unit normal vectors nLEE and nLPE point-
ing towards the exterior of their respective domains.
Figure 1 shows the configuration of the computational
domain with LEE/LPE coupling interface.

3.1. LEE Formulation

The weak form of the weighted residual formulation
derived from Equation (2) for the LEE yields:∫

ΩLEE

(
jωrwTq′ − jmwTAθq

′ + wTAcq
′

−r ∂w
T

∂r
Arq

′ − r ∂w
T

∂r
Axq

′
)

dr dx

+
∑
i

∫
ΩLEEi

D(w)TτiL(q′) dΩLEEi

= −
∫

ΓLEE

rwTFq′ dΓ, (5)

where w is the weighting function vector, and
F = nxAx + nrAr is the flux matrix, nx and nr being
the components of the outgoing unit normal vector to
the boundary ΓLEE. The superscript T denotes the
Hermitian transpose. The stabilisation term D(w)Tτi
in the left-hand side of Equation (5) is defined within
each element as the product of the stabilisation oper-
ator D(w) and the stabilisation parameter τi. In this
study, the GLS stabilisation operator is used [10]:

D(w) =

(
jω − j

m

r
AT
θ +

1

r
AT
c

)
w

+
1

r

∂rAT
r w
r

+
∂AT

xw
∂x

. (6)

Following Rao and Morris [11], the stabilisation para-
meter is defined as τi = max(αhi,l/λl)I, where α is a
stabilisation coefficient, hi,l is the element size in the
lth-direction, λl is the spectral radius of the coefficient

matrix Al, and I is the identity matrix. In the simula-
tions, the coefficient α is set to α = 1/(2p). The factor
1/p accounts for the high-order shape functions, and
the factor 1/2 gives a value of τi analogous to the
steady convective-diffusive equation [9].

3.2. LPE Formulation

Introducing the test function w for the axisymmetric
LPE and considering the velocity component u0θ = 0,
the weighted residual formulation for the LPE reads:∫

ΩLPE

(
−r ρ0

c20

d0w

dt

d0φ
′

dt
+rρ0∇w · ∇φ′+

m2

r
ρ0wφ

′
)

dr dx

= −
∫

ΓLPE

ρ0

c20
rw

((
u2

0n − c
2
0

) ∂φ′
∂n

+ u0nu0τ

∂φ′

∂τ

)
dΓ

−
∫

ΓLPE

j
ρ0

c20
rωu0nwφ

′ dΓ, (7)

where u0n is the normal mean flow velocity, u0τ the
tangential mean flow velocity, and the overline · de-
notes the complex conjugate.

3.3. Coupling Methodology

At the interface between the two subdomains ΩLEE
and ΩLPE, appropriate coupling conditions are re-
quired in order to ensure the acoustic propagation
through the interface. To this end, the boundary in-
tegrals in the formulations (5) and (7) are expressed
as functions of the variables of the other subdomain.

For the LPE side, the generalised Robin boundary
condition is used in order to represent the transmis-
sion of the acoustic characteristics propagating along
the normal vector to the boundaries:

∂φ′

∂n
+ jk+

c φ
′ = gn, (8)

where gn is the source term denoting the acoustic
characteristic traveling along the normal vector n,
and k+

c = ω/(c0 + u0n) is the outgoing acoustic
wavenumber. The quantity gn is prescribed from the
LEE as:

gnLEE =
∂φ′

∂nLPE
+ jk+

c φ
′, (9)

where the velocity potential is computed from the
LEE variables as:

φ′ =
1

jωρ0

((
u2

0 − c20
)
ρ′ − u0 · (ρu)′

)
. (10)

The expression of ∂φ′/∂n in Equation (8) is then re-
placed in Equation (7), leading to a boundary integral
with contribution terms from the incoming waves:

BLPE = −
∫

ΓLPE

ρ0

c20
r
(
u2

0nLPE
− c20

)
wgnLEE dΓ, (11)

where u0nLPE = u0 · nLPE.
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For the LEE side, the flux F in the boundary integ-
ral of Equation (5) is decomposed into the contribu-
tions of two flux matrices F+ and F−, containing the
outgoing and incoming characteristics, respectively. In
the coupling strategy, only the incoming characterist-
ics are imposed, yielding the following coupling integ-
ral:

BLEE = −
∫

ΓLEE

rwTF−q′LPE dΓ, (12)

where the variable vector q′LPE is built from the velo-
city potential φ′ computed in the LPE domain:

q′LPE = ρ0


0
∂
∂r
−jmr
∂
∂x
0

φ′ − ρ0

c20


1
u0r

u0θ

u0x
pc0
ρ0

 d0φ
′

dt
. (13)

This coupling method combines two sets of equations
which do not support the same waves: while the LPE
only supports the right- and left-propagating acoustic
waves, the LEE also account for the vorticity and the
entropy waves. Thus, in order to avoid spurious reflec-
tions, the boundary interface between the LEE and
LPE subdomains must be located in a region where
the amplitude of the vorticity and entropy waves is
negligible. In the framework of aeroengine noise, as
the vorticity waves develop along the jet shear layer
as a vortex shedding, the boundary interface should
therefore not be defined in that region.

3.4. Finite Element Model

From the integral formulations (5) and (7), a linear
system Ks = f is obtained, where the complex-
valued sparse matrix K contains the different con-
tributions of the physical integrals from both subdo-
mains, and their coupling terms BLEE and BLPE. The
vectors s and f are the solution and source vectors,
respectively. The matrix K can be written as:

K =

[
K11 C12

C21 K22

]
, (14)

where K11 and K22 are the system matrices relative
to the LEE and LPE subdomains respectively, and
C12 and C21 are the coupling matrices between the
two subdomains.

In the p-FEM solver, the standard linear basis is
enriched with edge and bubble shape functions. The
Lobatto shape functions are used in the numerical
simulations for their hierarchic property and their
good conditioning [8]. In the simulations, specific
boundary conditions are applied at the walls and
at the external boundaries of the domain. More
precisely, an axial symmetry condition is enforced
along the boundary at r = 0 and hard-wall conditions
(u0n = u′n = 0, where u′n is the normal velocity
perturbation) are specified at the engine duct walls.

0 0.5 1
0

0.5

1

x (m)

y
(m

)

Figure 2: Computational domain and mesh for the duct
test case (coupling interface at x = 0.5 m).

PML are applied to inject the modes inside the duct
and to absorb the outgoing waves in the far-field re-
gion. More details on the application of the boundary
conditions can be found in [5, 16].

The calculations presented in this paper have been
performed in a Matlab computing environment us-
ing a standard computer (Intel Core i7 2.7 GHz,
32 Go RAM) [17].

4. Numerical Results

In this section, the validity of the LEE/LPE coupling
methodology is verified by simulating a duct propaga-
tion test case. The coupling method is then applied
to compute the sound radiated from a simplified aer-
oengine exhaust.

4.1. Duct Test Case

Let us consider an infinite duct where an acoustic
plane wave propagates in the x-direction, in the pres-
ence of a uniform mean flow defined by a Mach num-
ber M0 = u0/c0 = 0.6, a density ρ0 = 1.225 kg/m3

and a speed of sound c0 = 340.27 m/s. A two-
dimensional (x, y)-section of the duct is modeled us-
ing a square computational domain, such that both
x and y range from 0 to 1 m, as shown in Figure 2.
Characteristic boundary conditions are applied at the
external boundaries of the domain in order to ensure
the acoustic propagation. An unstructured mesh com-
posed of triangular elements is used with a character-
istic mesh size h = 0.5 m.

Two test cases are considered. In the first case, the
whole domain is solved using the LEE. In the second
case, the computational domain is divided into a LEE
and a LPE regions separated by a plane interface loc-
ated at x = 0.5 m (see Figure 2). In order to evaluate
the performance of the LEE/LPE coupling in terms
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Figure 3: Error EL2 against the Helmholtz number, for an
acoustic plane wave in a two-dimensional duct. Solid line:
no coupling, full LEE. Dashed line: LEE/LPE coupling,
with pint = p. Dotted line: LEE/LPE coupling, with pint =
p+ 1.

of accuracy, the L2-norm error EL2 between the nu-
merical solution and the analytical solution is com-
puted for the velocity potential. Figure 3 presents
the error levels obtained from the full LEE compu-
tation (solid line) and from the LEE/LPE coupling
computation (dashed line) against the characteristic
Helmholtz number k0h, where the wavenumber k0 var-
ies from 0.01 m−1 to 100 m−1, and the polynomial or-
der p from 1 to 9. It is observed that the L2-norm con-
vergence in the high-resolution regime is of order p for
the LEE/LPE coupling solution, whereas it is of order
p+1 for the full LEE solution. This is due to the pres-
ence of the gradient components ∂φ′/∂n and ∂φ′/∂τ
in the coupling strategy (see Equations (9) and (13)).
These terms are obtained from the differentiation of
the velocity potential φ′ along the interface, which de-
teriorates by one order the accuracy of the scheme. In
order to circumvent this loss of accuracy, the poly-
nomial order pint in the elements along the coupling
interface can be incremented by 1. The error levels
thus obtained are displayed in dotted line in Figure 3.
In this case, the convergence rates are similar to those
obtained without coupling. These results demonstrate
the validity of the proposed coupling method in the
framework of a high-order finite element scheme. More
details on this validation case can be found in [5].

4.2. Aeroengine Exhaust Acoustic Propaga-
tion

The LEE/LPE coupling strategy is applied to simu-
late the sound radiated from a straight circular semi-
infinite duct [18]. The duct is characterised by a radius
rd = 1 m and infinitely thin walls. Its geometry is dis-
played in Figure 4. The mean flow velocity is oriented
in the axial direction x, and defined by a Mach num-
ber Md = 0.5 in the duct and Mo = 0 in the outer
region. Turbofan exhaust mean flows are character-
ised by shear layers with strong velocity gradients. In
order to reproduce these conditions, the mean flow

Md

Mo

rd

Figure 4: Straight circular duct geometry of the aeroengine
exhaust.

Mach number in the shear layer is imposed from the
following analytical profile:

M(r, x) = M

(
1 + tanh

(
rd − |r|
ζδ(x)

))
, (15)

where M = (Md + Mo)/2 is the mean value of the
Mach number, ζ = 2/5 cos2(β/2) is a parameter to
control the shear layer profile, β = 20◦ is the spread-
ing angle and δ is the shear layer thickness given by:

δ(x) = 2(x− xd)tan(β/2). (16)

In the ambient medium, the mean flow density,
the speed of sound and the specific heat ratio are
uniform and respectively have the following values:
ρ0 = 1.225 kg/m3, c0 = 340.27 m/s and γ = 1.4. At
the duct inlet, an acoustic duct mode (m,n) = (10, 1)
is injected inside the pipe with the angular fre-
quency ω = 5785 rad/s and the Helmholtz number
k0rd = 17.

In order to capture the non-uniform mean flow ef-
fects, the shear layer region is solved using the LEE.
In the rest of the domain where the mean flow is ir-
rotational, the LPE is applied. The computational do-
main considered in this study is presented in Figure 5.
It extends from x = 0 to 5 m axially and from r = 0
to 2.5 m radially. The duct exit plane is located at
xd = 2.5 m. The coupling interface between the LEE
and the LPE regions is shown in Figure 6, where the
mean flow Mach number contours are displayed, as
well as in Figure 5. It surrounds the duct trailing edge
and is deliberately located at a distance of 0.2 m from
the geometrical singularity in order to avoid the pro-
duction of spurious reflections due to the vortex sheet
generated there.

At the duct inlet and on the external boundar-
ies of the domain, PML are applied. The PML are
one-element wide, with a length of 0.2 m. On the
duct walls, hard-wall boundary conditions are im-
posed. Axisymmetric boundary conditions are applied
at r = 0 along the axis x. Finally, the coupling condi-
tions introduced in Section 3.3 are implemented along
the coupling interface between the LEE and the LPE
regions.

The spatial discretisation is carried out using an
unstructured mesh mainly composed of triangular ele-
ments, as shown in Figure 5. More precisely, in the
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Figure 5: Computational domain, mesh, points where
the SPL is computed (red dots), and coupling interface
(magenta dotted lines).
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Figure 6: Mean flow Mach number contours.

shear layer, the grid spacing in the axial direction
is equal to 0.04 m in order to capture the vorticity
shedding developing from the duct trailing edge. In
the rest of the domain, a mesh size of about 0.2 m is
imposed. These element characteristic dimensions are
chosen with respect to the shortest acoustic and vorti-
city wavelengths, which in this example are both equal
to 0.18 m. The use of high-order shape functions pre-
vents from having to use too small elements. The com-
putational domain then contains 1272 elements in the
LEE subdomain and 1367 elements in the LPE subdo-
main yielding the following ratio τ e

LEE/LPE = 48.2%.
This means that 48.2% of the elements are concen-
trated in the LEE domain while 51.8% of the elements
lie in the LPE domain.

In order to evaluate the benefits of using the
LEE/LPE coupling strategy in terms of memory re-
quirements and computational time, another simula-
tion has been carried out applying the LEE in all
the computational domain. The two computations are
performed using a polynomial order p = 8.

The contours of the real part of the non-dimensional
pressure and x-momentum obtained in the simulation
performed with the LEE/LPE coupling are shown in
Figures 7 and 8, respectively. The solution is continu-
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x (m)

r
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)

−0.4 −0.2 0 0.2 0.4

Figure 7: Real part of the non-dimensional pressure, ob-
tained with the LEE/LPE coupling simulation.
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Figure 8: Real part of the x-momentum
(
kg/m2/s

)
, ob-

tained with the LEE/LPE coupling simulation.

ous across the coupling interface. Sound propagation,
refraction and radiation effects are also visible. In ad-
dition, the shear layer is responsible for the genera-
tion of the hydrodynamic Kelvin-Helmholtz instabil-
ity, which develops as a vorticity shedding along the
duct wake and decays after a finite distance.

The Sound Pressure Level (SPL) is computed at
points located on a circle of radius 2 m centred at (x =
2.5 m, r = 0). This circle is shown in red in Fig-
ure 5. The corresponding directivities obtained from
the simulation with the LEE/LPE coupling and from
the full LEE computation are shown in Figure 9. The
direction given by the angle Φ = 0◦ is aligned with the
positive x-direction. The results are compared to an
analytic solution obtained without vorticity shedding
and used as a reference solution [19]. A good agree-
ment is observed between the analytical and numer-
ical solutions. In particular, the vortex sheet does not
significantly impact the acoustic directivity outside of
the duct wake. Close to Φ = 30◦, a peak correspond-
ing to the vortex sheet is observed. This peak is not
visible on the reference solution, since the Kutta con-
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Figure 9: SPL directivity for points located on a circle of
radius 2 m and of centre (x = 2.5 m, r = 0). Black solid
line: analytical solution. Red dots: full LEE solution. Blue
dots: LEE/LPE coupling solution.

dition is not applied. The non-uniform mean flow is
responsible for the wave refraction outside the duct.
The SPL plot also shows that the coupled model solu-
tion nicely matches the full LEE solution, in both the
LEE and the LPE subdomains. Some discrepancies
are observed near the symmetry axis for Φ < 20◦

where the SPL is lower than 80 dB, i.e. about 60 dB
below the maximum SPL.

In terms of memory requirements, the memory us-
age for the full LEE run is of 6 Gb, while it is of
3 Gb for the LEE/LPE coupling run. Therefore, the
coupled computation requires 50 % less memory than
the full LEE simulation, which corresponds to the ra-
tio of elements in the LEE region with respect to the
whole domain. In terms of computational time, the
total time required to factorise and solve the matrix
system is 28.7 s for the full LEE solution and 16.9 s
for the LEE/LPE coupling solution, which means a
computational time reduction of 41.1% in the latter
case.

5. Conclusions

This paper demonstrates the applicability of a novel
coupling method dedicated to aeroengine exhaust
noise predictions. The method is based on the com-
bination of the Linearised Euler Equations and the
Linearised Potential Equation, in order to optimise
the computational cost. The LEE are used in the re-
gions of strong mean-flow gradients, whereas the LPE
applies in the regions where the mean flow is irrota-
tional. The coupling strategy, presented for axisym-
metric flow configurations, has been successfully ap-
plied to predict the noise radiated from an aeroengine
exhaust. It is found to allow for the transmission of
the acoustic waves between the LEE and the LPE
subdomains, without the generation of spurious re-
flections. The benefits of this approach with respect
to a full LEE model are also shown, with a gain of
about 50% both in terms of memory usage and com-
putational time. Promising results are thus expected
when applying this coupling strategy to predict the

sound radiated from aeroengine exhausts using three-
dimensional models.
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