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Summary 
In a recent publication, the stationary response of multi storey frames with hysteretic springs 
representing the massless columns and rigid masses for the floors is presented. As an extension, the 
transient behavior without an elastic restoring force shall be investigated. For the one degree of 
freedom case the results using the Gaussian closure technique are equivalent to the results of the 
statistical linearization. However, this is not the case for a multi degree of freedom case. 
Additionally, the Gaussian closure technique allows for a system without a linear restoring force. 
In this case, no stationarity will be reached and therefore only a transient analysis of the 
displacements of the floors is possible. The hysteresis is simulated using Bouc’s original model. 
The response is calculated with an explicit first order time step procedure for the moments derived 
from Gaussian closure technique. The derivation of the solution is done analytically using a 
recursion algorithm. This solution is based on relative displacements that can be derived in a simple 
manner for chain like structures like multi-storey frames in 2D. Therefore, the results produced are 
the relative displacements that can be transformed to absolute displacement, because the Gaussian 
closure will calculate all variances and co-variances of the system. The major disadvantage of the 
Gaussian closure method is that all co-variances and mean values have to be determined, because 
the number of equations that have to be solved increases almost quadratically with the number of 
mechanical degrees of freedom. The results of the Gaussian closure technique are compared to the 
results from the Monte-Carlo method. 
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1. Introduction1 

The Bouc model [1, 2] is a relatively simple model 
to describe the elastic-plastic behavior of structural 
components. A mathematical description of a 
dynamic multi degree of freedom (MDOF) system 
with the hysteretic behavior described by Bouc is 
possible using a state vector description, which is 
particularly useful in the stochastic case [3]. The 
state vector description depends only on first order 
differentials. The usual degrees of freedom are the 
displacements of the nodes. Introducing the velocity 
of the degrees of freedom (DOF) as an additional 
state vector variable a description of a dynamical 
system is possible. The Bouc model adds a third 
type of variables to the state vector the force 
proportional displacements of the hysteretic 
elements. 
If the loading of the system is of random type, the 
Monte-Carlo method allows estimating the exact 
                                                      

 

solution of the dynamical system. However, this 
method is very time consuming, if appropriate 
estimates are desired. If the loading is a white noise 
random process the Kolmogorov [4] equations 
allows deriving differential equations depending on 
the multi-variate conditional probability density of 
the random response. However, no analytic solution 
for this complex differential equation exist. 
Furthermore, although the moment equations are 
exact, but in most cases, also for the Bouc model the 
number of unknown moments is always higher, than 
the given number of equations for their solution.  
Therefore, an assumption on the higher moments is 
needed. 
In the case of the Gaussian closure [5,6] only the 
first and second order moments are derived by the 
nonlinear differential equations and the higher order 
moments are converted into sequences of first and 
second order moments using Isserlis theorem [7,8]. 
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Additionally, an approximation by the Gaussian 
closure, assuming that the multi-variate probability 
density is of Gaussian type, allows deriving an 
analytic solution for the differential equations 
depending on the moments of the probability 
density.  
The main difficulty is the solution of the integrals 
in the Bouc model that depend on sign-functions. 
The sign functions have the state vector variables as 
an argument. For a single degree of freedom system 
the argument are the velocities and the force 
proportional displacement of the DOF. For a MDOF 
system, the difficulty occurs that the argument 
becomes the difference of the values at two nodes. 
Therefore, a description of the system in relative 
coordinates is needed. System with only one 
direction of freedom e.q. multi-storey frames allow 
for a simple representation as a chain like system 
that can be simply described in relative coordinates 
only. 
 
2. Simple liquid tank model 

Similar to multi-storey frames, a simple model for 
a fluid filled tank can also be described in relative 
coordinates, which shall be investigated in more 
detail here. In this model, the tank with its mass is 
one degree of freedom and the swapping mass and 
impulsive mass of the fluid are two additional 
degrees of freedom. 
A ground motion presenting an earthquake event 
gives the excitation. Clearly, a white noise 
excitation is not a valid assumption for an 
earthquake event. Therefore, the white noise 
excitation is filtered by a linear differential equation 
of the second order. A filtering by a third order 
differential equation proposed in some literature for 
special ground profiles is also possible. The DOFs 
of the filter are simply added to the state vector of 
the system.  
The earthquake events are often assumed to behave 
stationary. However, this is not the case in practice. 
Therefore, a time dependent intensity of the random 
process will be added to the model. In a future, a 
change of the filter parameters will be used to be 
able to change also the frequency content of the 
random excitation with respect to time. To calculate 
the transient response of the system, an explicitly 
given first order differential equation with respect 
to time for the moments has to be solved. This done 
by a simple time step procedure. 
 
 

3. Numerical model 

The two special integrals that have to be solved 
consist of a polynomial of the sate vector variables, 
a sign function with the relative velocity or the force 
proportional displacement of the related DOF and 
the probability density. If the variable given in the 
sign function is used as the last integration variable 
the multi-dimensional integral depending on all 
variables in the state vector can be solved 
analytically using symbolic algebra (MAPLE). For 
the single degree of freedom (SDOF) case, the 
multi-dimensional integral can be solved 
analytically in one-step [9,10]. For the MDOF case 
[11] the number of state vector variables changes 
from model to the other. Therefore, a sequence of 
equations giving the analytical solution for the 
integration with respect to one state vector variable 
needs to be derived. The integration with respect to 
the variable occurring in the sign function leads to 
a solution that depend on the Gaussian distribution 
itself. This function does not allow further 
integrations and is therefore the last step. 
 
The Gaussian closure for a SDOF model behaves 
very stable. Here the integration is done in a single 
step and delta-distributions caused by variances 
with the value zero are not dangerous. In the MDOF 
case, the integration is done separately for every 
state vector variable and divisions by the variances 
occur in the equations. Therefore, the variances are 
limited to values above 10-8. Three effects lead in 
some time steps to zero or negative values for the 
variances: 

- The explicit time step procedure produces 
some artefacts caused by the extrapolation, 

- the time varying intensity of the random 
process leads to nearly deterministic 
behavior after the excitation has ended, 

- the ground vibration alone leads highly 
correlated behavior of the upper parts of the 
model. 

The last argument also leads to correction 
coefficients about or above one, or minus one that 
also lead to a breakdown of the time step iteration. 
This occurs especially between tank and impulsive 
mass, because these two DOFs are coupled very 
stiffly with a high resonance frequency and the 
excitation is limited to low frequencies. 
To correct those values the variances are limited to 
small positive values and the correlation 
coefficients are limited to an interval [-0.999999, 
0.999999]. 
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With these measures, the iteration is stable and 
useful results are produced compared to the Monte-
Carlo method, but the performance is drastically 
reduced. For a SDOF case, a performance factor of 
10000 for the Gaussian closure was found. For the 
MDOF case, the performance factor compared to 
Monte-Carlo method is only 10. 
To increase the performance is an ongoing work. 
The Monte-Carlo method is also implemented as an 
explicit time step procedure based on the state 
vector variables. For a good estimation, 100.000 
realizations were used. The time step was of the 
same size as for the Gaussian closure. Usually the 
Gaussian closure can use much larger time steps, 
because the moments iterated in the Gaussian 
closure behave much smoother than the realizations 
used in the Monte-Carlo method. This could further 
increase the performance considerably. However, it 
has to tested, whether a larger time step has an 
influence of stability of the iteration. Additionally, 
the transient load hinders the approaching of 
stationary values for the moments therefore, the 
time steps cannot be increased with respect to time 
in a manner as it was used for a stationary load 
before. 
 
4. Results 

In the numerical tests, dimensionless coordinates 
are used to generalize the results. For a first test run 
the results from 0 to 100 time units is presented in 
Figure 1. The Gaussian closure slightly 
underestimates the results from the Monte-Carlo 
simulation. 
The intensity of the load is given with 0.5. The time 
window is a tapered window with transition regions 
from 0 to 1 in the time interval [0,1] and a transition 
region from 1 to 0 in the time interval [30,50]. The 
function in the transition regions is of cosine type. 
The parameter of the load and the filter are 
 Mass    0.06667, 
 Damping   0.3, 
 Stiffness   1.06667. 
The parameters used for the tank coupled with the 
ground are 
 Mass    1.0, 
 Damping   0.0, 
 Stiffness   1.0, 
 Hysteretic parameter A  1.0, 
 Hysteretic parameter g  0.5, 

Hysteretic parameter q  0.5. 
A pre-stressing is added to the hysteretic spring 
with a value of 0.5. A linear elastic part is not added 

to the hysteretic spring coupling the tank with the 
ground. 
The parameters used for the impulsive mass 
coupled with the tank are 
 Mass    0.1, 
 Damping   0.0, 
 Stiffness   0.5. 
The parameters used for the sloshing mass coupled 
with the tank are 
 Mass    0.5, 
 Damping   0.0, 
 Stiffness   0.1. 
This assumption does not work for the statistical 
linearization, increases the nonlinearity in the 
model, and makes the iteration less stable. In 
addition, the assumption that the damping 
coefficients of the springs are zero reduces the 
stability of the iterative method. 
 
5. Conclusion 

The Gaussian closure is a method for a fast 
approximation of MDOF system with elastic-plastic 
spring elements described by the Bouc model. 
However, the stability of the iterations needed for 
the transient case needs some corrections that 
reduce the performance of the proposed method. 
The optimization of the iteration with respect to the 
chosen time step is an ongoing project. 
The results of the Gaussian closure fit well to the 
results of the Monte-Carlo method. It has to be kept 
in mind that the Gaussian closure is a second order 
statistical method, therefore the deviations become 
larger, if the non-linearity of the hysteretic elements 
increases. 
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Figure 1: Mean value (M) and standard deviation 
(S) of Gaussian closure (GC) and Monte-Carlo 
(MC) method for the tank mass (t), impulsive mass 
(i) and sloshing mass (s). 
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