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Summary 

The present work involved a sound-sorting and category-labelling task that elicits rather than 

prescribes words used to describe sounds, allowing categorization strategies to emerge 

spontaneously and the interpretation of the principal dimensions of categorization using the 

generated descriptive words. Previous soundscape work suggests that ‘everyday listening’ is 

primarily concerned with gathering information about sound sources, and that sounds are typically 

categorized by perceived similarities between the sound-causing events. The present work 

demonstrates that this is likely to be the case when sound-sources are sufficiently differentiated for 

this to be a useful cognitive strategy, such as when categorizing a variety of different sound sources, 

or when categorizing a broad class of sounds with multiple sources such as ‘water’. However, 

distinct strategies based upon alternative cues emerge for other types of sounds. For example, 

categorization of dog sounds is primarily determined by judgements relating to perceptual 

dimensions similar to valence (‘sad’/’lonely’-‘playful’/’friendly’) and arousal (‘bored’/’whining’-

‘threatening’/’vicious’), a finding that supports the circumplex model of affect as a meaningful 

framework for understanding human categorization of this type of sound. Categorization of engine 

sounds on the other hand was found to be based primarily upon explicit assessment of the acoustic 

signal, along dimensions which correlate strongly with the fluctuation strength (‘steady’-

‘chugging’) and sharpness (‘muffled’-‘jarring’) of the recordings. These results demonstrate that 

categorization of sound is based upon different strategies depending on context and the availability 

of cues. It has implications for experimental methods in soundscapes that prescribe conceptual 

frameworks on test subjects. For instance, careful consideration should be given to the 

appropriateness of semantic differential scales in future perceptual soundscape work. 
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1. Introduction 

Categorization describes the process by which the 

correlational structure of the attributes of objects in 

the environment is used to simplify and apply 

meaning to sensory experience [1, 2]. One approach 

to identifying the attributes with which categories 

are formed is the semantic differential method, 

whereby concepts and events (e.g. sounds) are 

scored on attribute rating scales. The proximity of 

events and concepts to one another on the 

underlying dimensions of the resulting data are 

informative of their perceived similarity, and the 

correlations of each dimension with individual 

rating scales are informative of the attributes that 

drive the perception of similarity. The ‘core affect’ 

framework models affective states as the linear 

combination of valence (a pleasure-displeasure 

continuum) and arousal (an alertness continuum) 

[3-5]. Within soundscape research the semantic 

differential method has identified dimensions 

similar to valence and arousal such as 

‘pleasantness’ [6-8], ‘preference’ [9, 10], 

‘calmness’ [11], ‘relaxation’ [12], ‘dynamism’ 

[12], ‘vibrancy’ [11], ‘playfulness’ [10], and 

‘eventfulness’ [7]. 

An alternative method for identifying the 

attributes with which categories are formed is to use 

a sorting and category labelling task, followed by 

linguistic analysis of the category labels. An 

advantage of this method over others such as the 

semantic differential method is that the attributes 

by which sensory objects are compared are not 

prescribed a priori. Studies of soundscapes using 

this method have identified categories formed 

according to whether or not they contained human 

activity [13] and by the perceived similarity of the 

sound-causing events within the soundscape [13-

16]. A study using a similar procedure to explore 

isolated domestic sounds [17] found categories that 

resembled those proposed by Gaver based upon the 

type of material and event that produced the sound 

[18].  Another study of isolated sounds found the 

similarity of non-living sounds to be predicted by 

their acoustic properties, but the similarity of living 

sounds to be predicted by their semantic meaning 

[19]. 

 The present study tested the hypothesis that 

the cues used for category formation would differ 

between three different types of environmental 

sound: dog, engine, and water sounds. The 

descriptive words used to label categories from a 

sorting task were used as verbal correlates of sound 

category formation, and statistically analyzed using 

multinomial logit regression. 

 Procedure  

Sound sorting experiments were performed for 

each of the three types of sound separately via a 

web interface on a website hosted by one of the 

authors (http://sound101.org). Sounds were 

represented by tiles labelled as e.g. ‘Dog_1’, 

‘Dog_2’ etc. At the beginning of each study tiles 

were arranged in a pseudorandomized order along 

the left hand side of the screen in a ‘sound bank’. 

Instructions at the top of the screen instructed 

participants to: click the tiles to hear the sound; 

group similar sounds together by dragging them 

from the sound bank into one of five categories; use 

all five categories; give each category a name 

describing the sounds in the category. In addition, 

participants were instructed not to use category 

names such as ‘miscellaneous’, ‘random’, or 

‘sounds’ etc. The average amount of time taken to 

complete the task was approximately 20 minutes.  

 Stimuli and participants 

Fifty participants took part in the dog sound 

experiment, N=49 the engine sound experiment, 

and N=48 the water sound experiment. All 

Table I: Demographic data of participants for each 

study. All values are percentages rounded up to the 

nearest whole percent. 

  Dog Engine Water 

Age 18-29 70 33 48 

 30-39 12 49 38 

 40-49 14 10 13 

 50-59 4 6 2 

 60-69 0 2 0 

Sex Male 46 43 38 

 Female 54 57 63 

Audio Yes 18 2 10 

 No 82 98 90 
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participants completed a short web form consisting 

of questions regarding age, sex, first language, and 

audio expertise (‘Are you an audio engineer, an 

acoustician, a proficient musician, or similar?’) 

prior to the onset of the experiment. Participants 

were screened so as to only include those aged 18 

years and over and with English as a first language.  

Demographic data for the three studies is displayed 

in Table I. As can be seen, participants for each 

study were broadly similar, with the exception that 

there were more participants aged 18-29 in the dog 

sound study. This is addressed in the discussion 

section.  

 Dog and engine sounds were either 

downloaded directly from Freesound 

(www.freesound.org) or taken from the collection 

of Freesound audio files curated by ESC-50 [20].  

Water sounds were downloaded from the Adobe 

sound effects library. Engine and water sounds 

were edited so as to have 5s duration.  Dog sounds 

were selected from longer clips so as to sound like 

a complete dog bark (mean=5.8s, SD=3.05s).  

 Statistical analysis of category names 

2.3.1. Multinomial logit regression of category 

names 

Each category name for each of the three types of 

sounds was coded as a word-type describing either 

the source-event (referring to the inferred source of 

the sound), the acoustic signal (explicitly referring 

to the sound itself), or a subjective-state (describing 

an emotional response caused by the sound, or of 

the sound source).  

 Multinomial logit regression models were 

used to compare the likelihood of each word-type 

being used as a category name for each type of 

sound. In each case the dependent variable was the 

word-type (e.g. subjective-state v source-event), 

and the independent variable was the type of sound. 

Multinomial logit regression models produce log-

odds coefficients (B) that can be expressed as an 

odds ratio (eB). These describe how many times 

more likely a word-type is to be used relative to 

another word-type for one type of sound relative to 

another.  

 Dimensions of category names and sounds 

2.4.1. Contingency tables 

Data from each participant was collected as a 

matrix of 1s and 0s where rows represented 

individual sounds and columns represented the five 

categories created by that participant. 1s indicated 

that a sound had been sorted into the category. 

Tables representing each sound type were then 

combined into a single table with rows representing 

sounds and each of the 5N columns represented a 

category. Category names were initially processed 

by: removing white space and special characters; 

removing the word ‘sound’ or ‘sounds’; removing 

numbers; converting to lower case; and correcting 

the spelling. Category names were then stemmed 

(e.g. ‘drips and ‘dripping’ were reduced to ‘drip-’) 

before restoring all stems to the most common pre-

stemming version of that word. Following this 

process each combined table was then consolidated 

by summing columns where category names were 

the same or synonymous. This process reduced the 

number of category names from 250 to 59 for dog 

sounds, from 245 to 96 for engine sounds, and from 

240 to 63 for water sounds. A Pearson’s Chi-

squared test confirmed a dependence between 

sounds and category names for dog sounds 

(χ2(2494)=3977.3, p<0.001), engine sounds 

(χ2(3705)=3915.0, p<0.001), and water sounds 

(χ2(2728)=4314.2, p<0.001). 

2.4.2. Correspondence analysis 

Correspondence analysis (CA) was used to identify 

the underlying dimensions of the data, in order to 

visualise the sounds and category names in the 

same space.  CA is a method similar to the principal 

component analysis used to elicit dimensions of 

semantic differential analysis, but is suitable for use 

Table II: Variance explained by retained dimensions 

 Dog Engine Water 

Dim % Cum. % Cum. % Cum. 

1 27.4 27.4 17.6 17.6 22.7 22.7 

2 23.1 50.5 16.2 33.8 21.5 44.2 

3 11.7 62.2 7.1 40.9 16.8 61.1 

4 5.7 67.9 5.7 46.6 10.4 71.4 

5 3.4 71.2 5.3 51.8 4.2 75.6 

6 3.1 74.3 4.3 56.1 3.1 78.7 

7 2.6 76.9 3.7 59.8 2.6 81.3 

8 2.2 79.1 3.2 63   

9 2 81.2 2.9 65.9   

10   2.7 68.6   

 

Table III: Percentages of different word-types 

used to name categories 

 Dog Engine Water 

Source 24.0 60.0 92.5 

Acoustic 34.0 37.1 5.8 

Subjective 42.0 2.9 1.7 
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with categorical as opposed to continuous data [21, 

22]. Each consolidated contingency table was 

submtited to CA using the FactoMineR package 

[22] in R V3.3.3. Dimensions with eignenvalues 

greater than would be the case were the data 

random were retained (see Table II). 

2.4.3. Post-hoc analysis  

Based upon the results of the multinomial logit 

regression models a post-hoc decision was taken 

test for correlation between the coordinates of dog 

category names describing subjective-states and 

measures of valence and arousal for those words, 

taken from a scored dataset of 13915 lemmas [23]. 

The engine sounds were tested for correlation 

between the coordinates of the sounds themselves 

and two simple acoustic features: fluctuation 

strength and sharpness, evaluated with dBFA 

software using the Zwicker and Fastl’s criteria [24]. 

 

3. Results 

The main purpose of this study was to test the 

hypothesis that category formation of different 

types of sounds would be based upon different 

attributes, using category names as a verbal 

correlate for category formation. The word-types 

used to name categories for each type of sound are 

presented in Table III. The series of multinomial 

logit regression models fitted to the word-type data 

are presented in Table IV. First consider the dog v 

engine sound models. There was 36.7 times the 

odds of naming a category using a word that 

described a subjective-state rather than the source- 

event when describing dog sounds compared to 

engine sounds, and 2.3 the odds of using a word 

describing the acoustic signal rather than the 

source-event. However, there was only 0.1 times 

the odds of using a word describing the acoustic 

signal rather than a subjective-state when 

describing dog sounds compared to engine sounds.  

A similar pattern of results is seen in the 

dog v water sounds models. There was 22.4 times 

the odds of naming a category using a word that 

described a subjective-state rather than the source-

event when describing dog sounds compared to 

water sounds, and 97.5 times the odds of using a 

word that described the acoustic signal rather than 

the source-event. However, there was only 0.23 

times the odds of using a word describing the 

acoustic signal rather than a subjective-state.  

In the engine v water sounds models, there 

was 9.8 times the odds of using words describing 

the acoustic signal rather than a source-event when 

naming engine sound categories compared to water 

sound categories. Other comparisons were not 

significant, although the comparison between 

words describing the acoustic signal and words 

describing a subjective-state were trending towards 

significance.  To explore these results further, 

category names for dog, engine, and water sounds 

are plotted on the first two dimensions resulting 

Table IV: Results of the multinomial logit regression models. In each case the dependent variable was the word-

type and the independent variables were the type of sound. Significance at <0.05 and <0.01 indicated by * and ** 

respectively. 

  B eB SE p 

Dog v Engine 
Subjective v 

Source 
3.60 36.7 0.42 <0.001** 

 
Acoustic v 

Source 
0.83 2.3 0.22 <0.001** 

 
Acoustic v 

Subjective 
-2.78 0.1 0.42 <0.001** 

Dog v Water 
Subjective v 

Source 
3.11 22.4 0.3 <0.001** 

 
Acoustic v 

Source 
4.58 97.5 0.5 <0.001** 

 
Acoustic v 

Subjective 
-1.46 0.23 0.6 0.012* 

Engine v 

Water 

Subjective v 

Source 
0.97 2.6 0.6 0.13 

 
Acoustic v 

Source 
2.23 9.8 0.3 <0.001** 

 
Acoustic v 

Subjective 
1.31 3.7 0.7 0.057 
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from correspondence analysis of each consolidated 

contingency table in Figure 1. Note that these are 

the category names retained following 

consolidation, and therefore the ratio of word-types 

differs from those presented in Table III. First 

consider the category names for dog sounds (Fig. 

1A). The majority of dog category names described 

subjective-states (Table III), and the odds of using 

this word type relative to another word type were 

greater for dogs than for engine and water sounds 

(Table IV). Category names appear to change from 

being broadly positive to being broadly negative 

along the first dimension, and from describing 

states of higher to lower arousal along the second 

dimension. This impression is confirmed by the 

coordinates of category names on the first 

dimension correlating with valence scores (Fig. 2A; 

rs(29)=-0.53, p<0.001), and their coordinates on the 

second dimension correlating with arousal scores 

(Fig. 2B: rs(29)=-0.35, p=0.03).  

Next consider the category names for 

engine sounds (Fig. 1B). The proportion of 

category names referring to the acoustic signal was 

larger for engine sounds than for the other sound 

types (Table III), and the odds of naming categories 

using this word type rather than others greater 

relative to dog and water sounds. A visual 

inspection of the location of category names on the 

first two dimensions suggests that words relating to 

temporal regularity are to the left of the plot 

(‘constant’, ‘stuttering’, ‘chugging’) and those 

relating to irregularity to the right (‘staccato’, 

‘stuttering’, ‘chugging’). Words relating to the 

sound having a sharp quality appear to be located 

towards the top of the plot (‘jarring’, ‘drilling’, 

‘piercing’), whilst words such as ‘languid’, 

‘muffled’, and ‘hum’ are towards the bottom. 

Consistent with this observation, fluctuation 

strength and sharpness of the engine sounds were 

found to correlate with the coordinate of each sound 

on dimension 1 (Fig. 3A; rs(38)= 0.81, p<0.001) 

Figure 1: Category names of dog (A), engine (B), and 

water sounds (C) plotted on the first two dimensions 
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and dimension 2 (Fig. 3B; r (38)=0.83, p<0.001) 

respectively.  

The largest proportion of word type used to 

name water sound categories was source-event, and 

the odds of using this word-type rather than another 

was greater for this sound type than for dog and 

engine sounds. Accordingly, ‘bath’, ‘bathroom’ 

and ‘domestic’ are located close together on the 

first two dimensions of water sounds (Fig. 1C), as 

are ‘beach’, ‘river’, ‘waves’, and ‘nature’. 

However, since the principal organizing principle 

for water sounds was source-event, an attempt was 

not made to find correlates for the first two 

dimensions in the same was as for dog and engine 

sounds.  

 

4. Discussion 

Previous work suggests that everyday listening is 

primarily concerned with gathering information 

about sound-sources [18, 25], and that sounds are 

therefore typically categorized by perceived 

similarities between sound sources rather than by 

abstracted acoustic features [14, 16-18, 26]. In the 

present study, this appears to have been the case for 

water sounds. However, using verbal correlates of 

categorization the present study suggests that dog 

sounds were categorized based primarily upon 

similarities in subjective-state, whilst engine 

sounds were categorized based upon explicit 

assessment of the acoustic signal. These results are 

consistent with source-event identification being 

the primary method for categorizing environmental 

sounds, and that this method was sufficient to 

categorize water sounds but not the other types of 

sound: in the case of water, it may be that 

participants were able to identify a sufficient 

variety of source-events with which to perform the 

categorization task, whereas this was not possible 

for dog and engine sounds. The first two 

dimensions of the engine sound data strongly 

correlated with fluctuation strength and sharpness, 

suggesting that these were strong organizing 

principles for these sounds. The two-dimensional 

plots presented here represent a mapping between 

the acoustic correlates and their subjective 

meaning: for example, it is possible to infer that as 

fluctuation strength increases the engine sounds 

here were perceived as being more ‘chugging’ and 

‘judder’-like.  

 For dog sounds the present study suggests 

that a third cue for categorization was used. In this 

case participants spontaneously employed an 

evaluation of the subjective-state of the sound 

source, or the emotional response that it caused. 

This finding, and the finding that the principal 

dimensions of the dog data correlated with valence 

and arousal, lends support to the circumplex model 

of affect [3-5] as a meaningful framework for 

understanding human categorization of some 

environmental sounds. Using the two-dimensional 

plot it can be said that dog sounds that elicit a strong 

valence response are perceived as ‘excited’ and 

‘playful’, and those that elicit a large arousal 

response are perceived as ‘vicious’ and ‘snarling’.  

 As noted previously a larger proportion of 

younger participants took part in the dog sound 

study thank in the engine and water sound study. As 

such it cannot be ruled out the use of subjective-

state cues in the dog study was an effect of age. 

However, it is contended that it is more likely that 

Figure 2: Valence (A) and Arousal (B) scores of dog 

category names plotted on the first and second 

dimensions respectively 
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the results represents the greater availability and 

utility of strategies for categorization. It should be 

also be noted that the categorization cue most used 

for engine sounds was that of an explicit assessment 

of the acoustic signal, despite there being fewer 

audio experts in the engine study.  

 In summary, the results here are consistent 

with categorization of sound being based upon 

different strategies depending on context and the 

availability of cues. It has implications for 

experimental methods in soundscapes that 

prescribe conceptual frameworks on test subjects. 

For example, a number of soundscape studies have 

reported principal dimensions related to subjective-

states [6, 10-12]: however, careful consideration 

should be given to the appropriateness of 

prescribed semantic differential scales in future 

perceptual soundscape work. 
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