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Summary 
Over recent years, noise pollution has become a common problem for urban centers and its treatment 
a major environmental policy challenge. Railway contributes in the overall urban noise 
environment, mainly through the intermittent transient noise of the surface-line urban networks. In 
contrast to the more prominent and overlapping road traffic noise, its intermittent nature allows for 
the source separation and identification from other community noises. In close proximity to the 
railway corridor, railway transit noise usually supersedes the background level for a couple of 
seconds, unless it is masked by another random transient noise. With the simultaneous vibration 
monitoring, false-positive peaks in the noise signal time history can be excluded, as railway transit 
vibrations are many magnitudes higher than ambient vibrations. 
In this study, noise & vibration monitoring data was collected from 10,000 train pass-by in various 
locations in the Athens Tram and Metro Line 1 networks (surface line). By identifying the railway 
transient noise, a comparison is made between the daily/hourly average sound level, the average 
sound level only from the trains and the sound level during train pass-by. The vibration signal is 
used as a trigger-signal to phase out false-positive peaks in the acoustic signal. By applying machine 
learning techniques to the collected noise & vibration data, a process is investigated that can give 
reliable results for the railway noise impact even when only the noise signal is used.  

PACS no. xx.xx.Nn, xx.xx.N 

1. Introduction 

The urban soundscape contains the noises that are 
produced by all human activities and, in order to 
reduce their noise impact on the environment, it is 
critical for these sources to be firstly identified and 
secondly accessed for their significance and 
contribution. 
Railway noises poses a significant challenge since: 

- it is a high-power source 
- it can be very close to sensitive receivers 
- it is intermittent in nature 
- it is not display periodicity 
- it can be present during the night 

The above characteristics point to the fact that the 
railway noise cannot be assessed with standard 
sound pressure measurements, due to the short 
pass-by time, and at the same time it cannot be 
considered negligible, due to its high-power and 
proximity to sensitive receivers. 
By taking advantage of the intermittent nature of 
pass-by noise, it can be identified and separated 
from other community noises.  

1.1. Simplified model of train pass-by 

The main noise source from train operation is the 
noise produced by wheel-track interaction. In the 
far-field, the wheel-track interaction noise sources 
can be modeled as one average linear sound source 
of finite length. The simplest model will assume 
that this linear source is traveling on a straight track 
with constant velocity.  
If the attenuation due to the atmosphere, the 
ground, obstacles, etc. is disregarded, the sound 
pressure, 𝑆𝑃, at a receiver located at distance d from 
the track is given by: 

𝑆𝑃 = න
𝑄

2𝜋𝑟ଶ

௫ଶ

௫ଵ

𝑑𝑥 =
𝑄

2𝜋𝑑
𝜑, (1) 

where: 

𝜑(𝑡) = arctan
௨௧ ା 
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మ

ௗ
   is the angle as 

depicted in Figure 1,  
𝑢 is train’s velocity, 
𝐿 is train’s length, 
𝑑 is receiver’s distance from track and 
𝑄 is the sound power per unit length of the source 
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Figure 1, Simplified model of train pass-by 

1.2. Calculating sound exposure  

Plotting the sound pressure level, 𝑆𝑃𝐿, of the 
moving linear sound source over time (Figure 2), 
gives a maximum of: 

𝐿௠௔௫ = 20 log

𝑄
𝜋𝑑

arctan
𝐿

2𝑑
𝑝௥௘௙

, (2) 

when the linear sound source is centered regarding 
to the receiver (this moment will be set as 𝑡 = 0 
throughout this paper). 
 

 
Figure 2, SPL over time 
 
Theoretically the linear source produces sound 
pressure to the receiver even when it is very far 
away. However, if we integrate equation (1) to get 
the sound exposure, the resulting integral, from 
t = -∞ to t = +∞, is finite and sound exposure level, 
𝑆𝐸𝐿, equals to: 

𝑆𝐸𝐿 = 20 log
𝑙𝑖𝑚
்→ஶ

∫
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= 20 log
𝑄𝐿/2𝑢𝑑
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 (3)

 

It is however obvious that, in real life, a finite time 
interval must be applied in order to measure sound 
exposure from a real train pass-by. A characteristic 
time interval, that can easily be replicated, is train 
pass-by time, 𝑇௣, which is defined as the duration 
when any part of the train is opposite to the 
measuring position [1]. 

In Figure 2 the train pass-by time, 𝑇௣, is marked as 
the hatched area at the center of the graph. The A-
weighted equivalent continuous sound pressure 
level on the pass-by time, 𝐿௣஺௘௤, ೛்

, as defined in EN 

ISO 3095 [1], equals to: 

𝐿௣஺௘௤, ೛்
 = 20 log

1
𝑇𝑝

∑ ∫
𝑤௜𝑄௜
2𝜋𝑑

𝜑(𝑡)
ା்௣/ଶ

ି்௣/ଶ 
𝑑𝑡

𝑝௥௘௙
, (4) 

where: 
𝑇௣ = 𝐿/𝑢 is the train pass-by time 
𝑤௜ is the A-weighted factor per frequency band 
𝑄௜ is the sound power per frequency band 
 
The introduction of measured data in the above 
formulas yields the results shown in Table I. It is 
evident that for short trains and/or long distances 
from the track, the sound exposure of the receiver 
might be severely underestimated, if the noise 
impact assessment is based on 𝐿௣஺௘௤, ೛்

. 

It is thus evident that such a measuring method is 
not suitable for environmental assessment. The 
acoustic energy contained in preceding and 
succeeding ‘trails’ (Figure 2) cannot be neglected.  

Table I. Comparison of 𝑆𝐸𝐿 for 𝑇 = 𝑇௣ and  𝑇 → ∞ 

Input Data 
𝐿௠௔௫ 
[dB] 

𝑆𝐸𝐿
೛்
 

[dB] 
𝑆𝐸𝐿 
[dB] 

0.1 dB 
accuracy 

Q = 10 W/m 

L = 120 m 

u = 60 km/h 

d = 12 m 

79.2 90.9 91.5 
𝑆𝑃𝐿 − 𝐿௠௔௫ 

-58.6 dB 

Q = 5 W/m 

L = 120 m 

u = 60 km/h 

d = 12 m 

73.2 84.8 85.5 
𝑆𝑃𝐿 − 𝐿௠௔௫ 

-58.6 dB 

Q = 10 W/m 

L = 120 m 

u = 100 km/h 

d = 12 m 

79.2 86.4 87.0 
𝑆𝑃𝐿 − 𝐿௠௔௫ 

-58.6 dB 

Q = 10 W/m 

L = 30 m 

u = 60 km/h 

d = 12 m 

75.5 76.8 79.4 
𝑆𝑃𝐿 − 𝐿௠௔௫ 

-66.9 dB 

Q = 10 W/m 

L = 60 m 

u = 60 km/h 

d = 12 m 

77.9 84.2 85.5 
𝑆𝑃𝐿 − 𝐿௠௔௫ 

-63.4 dB 

Q = 10 W/m 

L = 120 m 

u = 60 km/h 

d = 7.5 m 

83.7 95.2 95.6 
𝑆𝑃𝐿 − 𝐿௠௔௫ 

-54.9 dB 

Q = 10 W/m 

L = 120 m 

u = 60 km/h 

d = 30 m 

69.4 81.9 83.5 
𝑆𝑃𝐿 − 𝐿௠௔௫ 

-64.7 dB 
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In order to calculate a sufficient time interval that 
is necessary to accurately estimate sound exposure, 
one has to investigate how the sound exposure 
evolves as the time interval of the exposure, 𝑇, is 
growing, starting from 𝑇 = 0 for 𝑡 = 0 and equally 
expanding towards past and future. To reach the 
𝑇 → ∞ limit, as defined in equation (3), to an 
accuracy of 0.1 dB, the ‘effective’ measuring 
interval needs to be expanded to include sound 
pressure levels more than -50 dB from 𝐿௠௔௫ (Table 
I), which is not possible in real life due to 
background noise. 
  
It is therefore proposed to assess the sound 
exposure of the pass-by using correction factors to 
the sound exposure based on 𝑇௣ as the integrating 
time interval. For the simplified model, it turns out 
that parameters 𝑄 and 𝑢 do not affect the ‘effective’ 
measuring interval needed to accurately calculate 
sound exposure; the parameter that affect the result 
is the ratio of the train’s length to the receiver’s 
distance from track: 
 

𝑆𝐸𝐿 = 𝑆𝐸𝐿
೛்

+ 𝐶௅/ௗ , (5) 

where: 

𝐶௅/ௗ = 20 log
2𝜋

2 arctan 𝐿/𝑑 +
ln(1 + (𝐿/𝑑)ଶ)

𝐿/𝑑 

 

2. Influence of background noise 

In practice it is impossible to measure true sound 
exposure produced from railway transits using 
simple sound pressure level measurements, due to 
background noise. If the background noise level is 
high enough, then the sound exposure is 
overestimated when the background noise level is 
higher than the sound level of the ‘effective’ 
measuring interval. 

2.1. Background noise masks source 

It was shown that the sound exposure is 
underestimated if the calculation interval is not 
long enough. ISO 3095 suggests calculating the 
sound exposure, referred as ‘Single Event Level’ 
(noted as ‘SEL’ in the document), by computing the 
sound pressure level during the time interval 
starting when the noise level is -10 dB compared to 
the level when the front of the train is opposite of 
the measurement position and ending when the 
noise level is -10 dB compared to the level when 
the back of the train is opposite of the measurement 
position. The purpose of the ‘Single Event Level’ 
index is to be used for type testing and periodic 

monitoring testing of rail vehicles, where the 
measurements are executed in controlled 
environment and at 7.5 meters from the track [1]. It 
was shown in the previous section that -10 dB 
might not be enough under certain circumstances, 
especially for measuring positions far away from 
the track. Besides, in urban environments it is not 
always possible to satisfy the 10 dB difference from 
background noise, therefore this method is not 
favorable.  
Returning to the simplified model, background 
noise can be modeled as a constant sound pressure 
level 𝐿௕. The overall sound pressure level at the 
receiver is then given by: 

𝑆𝑃𝐿௢௩௘௥௔௟௟ = 10 log ൬10
ௌ௉௅
ଵ଴ + 10

௅௕
ଵ଴൰ (6) 

Hence the sound exposure can be calculated from 
the overall sound pressure level as: 

𝑆𝐸𝐿் = 10 log න 10
ௌ௉௅೚ೡ೐ೝೌ೗೗

ଵ଴ 𝑑𝑡

்

− 𝐿௕ − 10 log 𝑇 (7) 

Of course, in practice background noise is not 
constant so there is an error introduced if equation 
(7) is used with an average value for 𝐿௕. When 𝐿௕ 
is estimated from the 95th or 99th percentile of the 
measurement values before and after the pass-by, 
the resulting sound exposure level of the pass-by, 
when equation (7) is applied, will be towards the 
conservative side (background noise influence will 
not be overestimated).  

2.2. Identify railway transits from other ‘peaks’ 
in time history 

The other major issue from the influence of the 
background noise is that the time history may 
contain other peaks that don’t correspond to the 
sound source under investigation. This is often the 
case when investigating railway noise in urban 
environments since it is very common to have road 
traffic noise coming from vehicle circulation from 
roads closer to the receiver than the railway 
corridor. 
For railway noise surveys, a very effective method 
to identify train transits is by simultaneously 
measure noise and vibration. It is highly 
improbable, in urban environments, that any other 
source of transient vibrations will be present at the 
magnitude of railway vibrations. Hence, false-
positive peaks in the noise signal time history can 
be excluded (Figure 3). 
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Figure 3, superimposed noise and vibration signals: 
30’ time history of noise (thick line) and vibration 
(thin line) signals. Train pass-by can be clearly 
identified in vibration signal while noise signal 
includes other peaks as well 

 
Another parameter that makes the identification of 
train transient sources from the vibration signal 
very efficient is that the ‘effective’ sound exposure 
period is very related to the ‘effective’ vibration 
exposure period (Figure 3). Thus, especially when 
acquiring statistical values over long-term 
monitoring sessions, there is no need for post-
processing each pass-by to adjust the sound 
exposure interval according to background noise; it 
can be estimated from the automatically detected 
vibration exposure.  
 

3. Case study: Athens Tram and Metro Line 1  

It is a common practice for railway operators to 
monitor noise and vibration emissions for 
environmental purposes and compliance. The 
monitoring program for Athens Tram and Metro 
Line 1 includes train pass-by identification, in order 
to isolate railway noise from other noise sources. 
The technique using the vibration signal as the 
trigger for identification, as shown in 2.2, has been 
performed in over 10.000 train pass-by. 

3.1. Measurement procedure  

The time history data acquisition, in 1 second 
intervals, was done with the use of two signal 
analyzers in synch. The first was inputting the 
sound pressure level at a height of 4m and the 
second was recording the vibration acceleration on 
the vertical axis. Both sensors were placed at a 
distance of 2m from the façade of the sensitive 
receiver. 
Using the technique presented in 2.2, the train pass-
by were identified from the vibration signal and the 
rest of the time period was considered as 
background noise. Based on the above, the sound 
exposure for each event and the background noise 
are calculated.  

The individual events are summed up to calculate 
the sound exposure from all train pass-by, thus the 
railway noise to the overall noise level can be 
compared. 

3.2. Discussion 

The results from a 24-hour sample period are 
shown in Table II in next page. From the data 
presented it is evident that the use of the overall 
measurements can substantially overestimate the 
contribution of the railway to the environmental 
noise. In particular, the deviation of the overall 
from the railway noise is 8.6 to 10.8 dB for the three 
rating periods (day, evening, night) which 
corresponds to a deviation of 9.7 dB for the 
weighted 24-hour 𝐿஽ாே index.  
It is also important to point out that while the 
background noise is exceeded during pass-by, the 
overall exposure of railway is below that from the 
other noise sources that comprise the background 
noise. 
In general, the day and the night average sound 
level are widely employed in legislation, 
regulations and guidelines. The presented 
technique can be applied for long term monitoring 
without the need of manual intervention for 
masking out background noise. Hence, without 
much effort, long term noise annoyance indexes 
can be calculated with less uncertainty than using 
techniques to extrapolate short term measurements 
of the sound exposure level from a representative 
sample of records for the various environmental 
and traffic flow conditions [2]. 
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4. Identify train events without vibration signal 

The train pass-by identification can be considered a 
pattern recognition problem. Machine learning 
techniques can be used to the collected noise & 
vibration data in order to identify train pass-by; in 
this study a technique from neural network theory 
was applied. 

4.1. Machine learning implementation 

Neural networks can recognize, classify, convert 
and learn patterns [3]. Pattern recognition refers to 
the categorization of input data into classes by 
recognizing significant features or attributes of the 
data. In traditional pattern recognition theory, a 
pattern is a dimensional feature vector or a point in 
n-dimension space. In the neural network approach, 
a pattern is represented by a set of nodes along their 
activation levels [4]. 

 
According to the interconnection theme, a network 
can be either feedforward or recurrent and its 
connections either symmetrical or asymmetrical 
[5]. Here we employ a feedforward neural network, 
whose connections all point in one direction, from 
the input to the output layer. Figure 4 exhibits a 
typical feedforward neural network [6]: 

 

Figure 4, Typical diagram of a feedforward network 

Input 
Layer

Hidden 
Layer

Output 
Layer

Table II. Train pass-by per hour analysis  

Time 
period 

𝐿௘௤,ଵ௛  
[dB(A)] 

𝐿௘௤,௣௔௦௦ ௕௬  
[dB(A)] 

Duration  
(# of pass-by) 

𝐿௕ 
[dB(A)] 

𝐿஺௘௤,ଵ௛,௢௡௟௬ ௧௥௔௜௡ 
[dB(A)] 

Assessment according 
to EU Directive 

49/2002 

07:00-08:00 70.6 72.1 00:05:23 (11) 68.1 61.2 

𝐿ௗ௔௬ 

[07:00 – 19:00] 

Overall: 68.7 dB(A)  

Only trains: 60.1 dB(A) 

08:00-09:00 70.1 71.8 00:05:45 (12) 67.0 61.2 

09:00-10:00 67.0 68.8 00:05:50 (12) 66.8 58.7 

10:00-11:00 67.2 67.7 00:06:41 (15) 67.2 58.2 

11:00-12:00 68.0 69.5 00:07:24 (16) 67.8 60.4 

12:00-13:00 66.7 69.0 00:07:53 (16) 66.3 60.2 

13:00-14:00 68.3 69.3 00:06:43 (13) 68.1 59.8 

14:00-15:00 68.8 71.7 00:06:34 (14) 68.3 59.4 

15:00-16:00 67.8 69.3 00:06:38 (13) 67.6 59.7 

16:00-17:00 68.5 70.9 00:07:59 (17) 67.9 62.1 

17:00-18:00 71.0 68.1 00:07:48 (17) 71.3 59.2 

18:00-19:00 68.3 71.2 00:06:42 (15) 67.8 59.0 

19:00-20:00 68.8 69.1 00:07:34 (16) 68.7 60.1 𝐿௘௩௘௡௜௡௚ 

[19:00 – 23:00] 

Overall: 67.9 dB(A)  

Only trains: 58.9 dB(A) 

20:00-21:00 67.4 67.3 00:07:29 (13) 67.4 58.3 

21:00-22:00 67.8 68.4 00:05:35 (10) 67.8 58.1 

22:00-23:00 67.4 68.9 00:06:10 (14) 67.2 59.0 

23:00-00:00 65.6 67.2 00:03:41 (8) 65.5 55.1 

𝐿௡௜௚  

[23:00 – 07:00] 

Overall: 63.4 dB(A)  

Only trains: 52.6 dB(A) 

00:00-01:00 63.9 67.5 00:03:13 (7) 63.6 52.5 

01:00-02:00 62.8 66.5 00:03:02 (7) 62.5 51.3 

02:00-03:00 64.2 67.8 00:01:45 (4) 64.0 50.1 

03:00-04:00 61.9 - 00:00:00 (0) 61.9 - 

04:00-05:00 63.0 - 00:00:00 (0) 63.0 - 

05:00-06:00 59.0 65.2 00:03:40 (8) 57.9 52.2 

06:00-07:00 63.7 69.5 00:04:41 (10) 62.6 57.4 
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For the training of the network a variant of the back 
propagation algorithm was used, resilient back 
propagation (Rprop). Rprop is a learning heuristic 
for supervised learning in feedforward artificial 
neural networks. This is a first-order optimization 
algorithm, created by Martin Riedmiller and 
Heinrich Braun in 1992 [7]. Rprop is one of the 
fastest weight update mechanisms along with the 
cascade correlation algorithm and the Levenberg-
Marquardt algorithm. 

4.2. Train pass-by learning and prediction 

For the learning and prediction of the train data, a 
three-layer feedforward neural network was 
implemented using the library Encog3 
(www.heatonresearch.com/encog) [8].  
For Athens Tram and Metro Line 1 networks, the 
input and hidden layer had 25 nodes each. The 
usual Sigmoid activation function was employed. 
The weights were initialized with random values. 
The output layer had only one node. After training 
with resilient propagation plus (+), for around 1400 
seconds, the network’s error rate in contrast to 
simple resilient propagation displayed steady 
monotone decrease, showing fast convergence. 
When the algorithm was tested for a 10-day noise 
dataset with already identified train events, the 
algorithm managed to identify all actual pass-by, 
but it also outputted 28% false-positive events. 
However, when applying a high-pass duration filter 
to the output data, the final results contain only 6% 
false-positive events and 1% missing actual events. 
The sound level accuracy of the predicted pass-by 
is ±0.5 dB compared to the measured values. 
Hence it is concluded that a 30-minute dataset, 
which includes about 10 events, is enough for an 
adequate train identification. For such small 
training interval, the training dataset can be 
manually acquired on site very easily and the 
computational power needed to assemble the neural 
network can be done in an average modern 
computer. 

4.3. Further development 

This methodology can be further developed, 
evaluated and tested under different conditions 
(geometry, traffic flow density, networks where 
different vehicle types operate simultaneously, etc.) 
in order to assess the algorithm's stability and 
performance in other scenarios. 

5. Conclusions 

This study presents methods that can be used to 
identify railway noise and separate it from other 
community noises in urban environments. It is not 

possible in practice to accurately measure sound 
exposure for individual train pass-by due to 
background noise. A correction factor, depending 
on the ratio of the train’s length to the receiver’s 
distance from track, is proposed to be used when 
using train pass-by time to calculate sound 
exposure. 
Community noise in urban environments contains 
intermittent noises that don’t correspond to train 
transit noise. This study presents two simple and 
straightforward approaches to identify and separate 
railway noise from other sources, one using 
vibration signal as a trigger-signal and one using a 
machine learning algorithm that distinguishes the 
peaks in the time history and predicts train transits, 
upon feeding it with a short training sample with 
identified pass-by. The above methods have been 
tested with data acquired from Athens Tram and 
Metro Line 1 urban railway networks. 
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