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Summary 

This paper aims at presenting a 3D semi-analytical model of a railway platform coupled to the 

ground through an elastomeric matetrial. The model is based on the bending plate vibration of the 

railway platform coupled to a surface spring which represents the elastomeric mat. The upper 

structure of the platform is excited by a punctual force while the lower structure is coupled to the 

ground. The problem uses a 2D spatial Fourier Transform. When sizing the characteristics of the 

elastomeric mat, one often considers the resonance frequency as the most important parameters. 

From a practical point of view for engineer, this parameter gives an average of performance 

insulation at higher frequency. However the resonance frequency may vary from on site to another 

mainly due to ground characteristics. This paper introduces the effect of such parameter on the 

insertion loss. 

PACS no. xx.xx.Nn, xx.xx.Nn 

 
1. Introduction

1
 

In recent decades, number of railway 

infrastructures grew up such as high-speed 

railways, trams and subways. All of these 

infrastructures are more and more often placed in 

urban area with strong acoustic and vibratory 

requirements. These infrastructures are generally 

coupled to the ground and therefor at the origin of 

the propagation of waves in the ground. These 

waves generate the vibration of buildings near 

railway infrastructure and are a source of 

significant noise pollution for residents. In this 

context, one of the strongest issues is to reduce the 

vibrations transmitted to the ground. 

There are currently different systems to reduce the 

vibration from the train. Three major categories 

could be distinguished to mitigate railway 

vibrations. The first category is the mitigation at 

the source, i.e. in the vicinity of the wheel-rail 

interaction [1]. Without being exhaustive about all 

existing techniques, maintenance operations 

performed on the wheels of trains and rails may 

contribute to the reduction of vibrations. In 

addition, pads between the rail and the concrete 

                                                      

 

 

slab can perform mitigation. The second category 

of mitigation is at the propagation path. Thus 

trenches in the ground depth can be made near the 

track and thus reduce the propagation [2]. 

Horizontal Vibration Barrier system has recently 

been developed using techniques similar to those 

used in this paper [3]. A slab is placed at the 

ground surface and blocks the vibrations. The third 

category of mitigation is at the reception in the 

building where it is possible for example to isolate 

buildings with springs or pads. 

The purpose of this article is to provide an 

analytical formulation of the ground/slab coupling 

in the case of a floating slab. A situation often 

encountered in urban area is modelled with the aim 

of mitigating the propagation of the vibration and 

understand the ground effect. In particular, it will 

be shown that the soil has a significant effect on 

the performance of a resilient. 

 

2. Floating slab modelling subjected to a 
punctual load force 
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Figure 1 - Overview of the problem. 

In this section, the problem of two slabs coupled 

together by a spring is modelled. One slab called 

slab 2 is coupled to the ground. Figure 1 gives an 

overview of the problem under consideration.[4] 

2.1. Slabs coupled to the ground 

Two finite slabs called 1 and 2 are modelled using 

the Kirchhoff-Love hypothesis so we neglect the 

shear deformation and the rotary inertia. In the 

frequency domain, the equations of motion of the 

two slabs are: 

{

𝐷1
∗∇4𝑤1 − 𝜌1ℎ1𝜔

2𝑤1 = 𝐹0𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0)

+𝐾𝑡
∗(𝑤2 − 𝑤1) 

𝐷2
∗∇4𝑤2 − 𝜌2ℎ2𝜔

2𝑤2 = 𝜎𝑝 + 𝐾𝑡
∗(𝑤1 −𝑤2)

 

(1) 

Where 𝐷1
∗ = 𝐷1(1 + 𝑗𝜂1) and 𝐷2

∗ = 𝐷2(1 + 𝑗𝜂2) 
are complex flexural stiffness. F0 is the amplitude 

of the force applied on the plate 1 to the point 

(𝑥0;  𝑦𝑂). The coupling between the plate 1 and the 

plate 2 is represented by a spring of stiffness 

𝐾𝑡 =
𝐸𝑡
∗𝑆𝑡

ℎ𝑡
 and damping 𝜂𝑡. 𝜎𝑝 represents the stress 

due to the ground/slab coupling. 

The unknowns of the problem are the 

displacements of plates 1 and 2 which can be 

expanded in series of slabs modes: 

{
𝑤1 = ∑ 𝑎𝑛𝑚𝜙𝑛𝑚𝑛𝑚

𝑤2 = ∑ 𝑏𝑝𝑞𝜙𝑝𝑞𝑝𝑞
 (2) 

where 𝑎𝑛𝑚 and 𝑏𝑝𝑞are the modal amplitude and 

𝜙𝑛𝑚 and 𝜙𝑝𝑞 are the modal shape of the plate 1 

and 2 respectively. 

In this problem we consider the guided boundary 

conditions where the shear force and the rotation 

are null at the slab boundaries. This allows 

providing a simple series over cosines functions 

while taking into account the rigid body of first 

order in this kind of study. So we have: 

{
𝜙𝑛𝑚 = 𝑐𝑜𝑠 (

𝑛𝜋

𝐿𝑥1
 𝑥) 𝑐𝑜𝑠 (

𝑚𝜋

𝐿𝑦1
 𝑦)

𝜙𝑝𝑞 = 𝑐𝑜𝑠 (
𝑝𝜋

𝐿𝑥2
 𝑥) 𝑐𝑜𝑠 (

𝑞𝜋

𝐿𝑦2
 𝑦)

 (3) 

A modal series of the force is also carried out for 

regularization of the problem: 

𝐹(𝑥, 𝑦) = ∑ 𝐹𝑛𝑚𝜙𝑛𝑚𝑛𝑚  (4) 

We replace the expression of the slab displacement 

(2) and the force (4) in the equations of the 

movement (6) and which gives: 

{
 
 

 
 
∑ ((𝐷1

∗𝑘𝑛𝑚
4 − 𝜌1ℎ1𝜔

2)𝑎𝑛𝑚 − 𝐹𝑛𝑚)𝜙𝑛𝑚𝑛𝑚

= 𝐾𝑡
∗(∑ 𝑏𝑝𝑞𝜙𝑝𝑞𝑝𝑞 − ∑ 𝑎𝑛𝑚𝜙𝑛𝑚𝑛𝑚 )

∑ (𝐷2
∗𝑘𝑝𝑞

4 − 𝜌2ℎ2𝜔
2)𝑏𝑝𝑞𝜙𝑝𝑞𝑛𝑚 = 𝜎𝑝

+𝐾𝑡
∗(∑ 𝑎𝑛𝑚𝜙𝑛𝑚𝑛𝑚 − ∑ 𝑏𝑝𝑞𝜙𝑝𝑞𝑝𝑞 )

 

 (6) 

2.2. Ground modelling 

The ground is modelled with Navier's equation 

which considers a continuous, homogeneous and 

isotropic elastic medium: 

𝜇∇2 𝑢⃗ + (𝜇 + 𝜆)∇(∇. 𝑢⃗ ) + 𝜌𝜔2 𝑢⃗ = 0⃗  (7) 

where 𝑢⃗ 𝑇 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧} is the vector of ground 

displacement. 

The ground is a semi-infinite medium in z-

direction and infinite in the direction x- and y-

direction. Tangential stresses along x- and y-

direction with respect to the z are zero at the 

surface. Normal stress along the z axis is also zero 

everywhere on the surface z = 0 except under slabs 

2: 

{
 
 

 
 𝜎𝑥𝑧(𝑥, 𝑦, 0) = 0 ∀(𝑥, 𝑦) ∈ ℝ

2

𝜎𝑦𝑧(𝑥, 𝑦, 0) = 0 ∀(𝑥, 𝑦) ∈ ℝ
2

𝜎𝑧𝑧(𝑥, 𝑦, 0) =  {
𝜎2(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝑆2
0 ∀(𝑥, 𝑦) ∈ ℝ2 − 𝑆2

 (8) 

where 𝜎𝑥𝑧 and 𝜎𝑦𝑧 represent tangential stresses and 

𝜎𝑧𝑧 represent normal stress. 𝜎2 represents the stress 

applied to the slab 2 by the ground. 

It is also necessary to consider the continuity of 

displacements at the interface between the slab 2 

and the ground: 

𝑤2(𝑥, 𝑦) = 𝑢𝑧(𝑥, 𝑦, 0)∀(𝑥, 𝑦) ∈ 𝑆2 (9) 

 

Euronoise 2018 - Conference Proceedings

- 1432 -



 

 

2.3. Ground / structure coupling resolution 

using 2D Fourier Transform and modal 

decomposition 

Since the ground is infinite in the x and y 

directions, a solution of the ground displacement is 

given by 2D Fourier spatial transform. 

A well-known technique to solve the equations of 

motion (7) consists in using a Helmholtz 

decomposition showing two categories of volume 

waves, the shear wave 𝑐𝑠 and the dilatational 

waves 𝑐𝑝. The boundary conditions at the ground 

surface in the Fourier domain are performed. The 

tangential stresses 𝜎𝑥𝑧 and 𝜎𝑦𝑧 is null in the 

Fourier domain whereas the normal stress 𝜎𝑧𝑧 
requires the coupling with the slab 2 to be taken 

into account: 

𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0) = ∬ 𝜎𝑧𝑧(𝑥, 𝑦, 0)𝑒
−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑆

𝑆2
=

𝜎̃2(𝑘𝑥, 𝑘𝑦) (13) 

 

where 𝜎̃2 represents the contribution of the 2D 

Fourier transform of the normal stress applied to 

the slab 2 by the ground. 

The expression of the ground displacement at the 

top surface in the Fourier domain can be put in the 

following form: 

𝑢̃𝑧𝑧(𝑘𝑥, 𝑘𝑦, 0) = 𝑁(𝐾𝑥 , 𝑘𝑦) 𝜎̃2(𝑘𝑥, 𝑘𝑦) (14) 

2.4. Solution for the plate modal amplitude 

The unknowns of this problem are the modal 

amplitudes of the slab 1 and 2, that is to say: 𝑎𝑛𝑚 

and 𝑏𝑝𝑞. The condition of continuity of 

displacements between the plate 2 and the ground 

is used: 

𝑢𝑧(𝑥, 𝑦, 0) = 𝑤2(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝑆2 (15) 

The displacement of the ground is obtained by 

taking the inverse Fourier transform of (14). In 

addition we use the relation (6) that we put in the 

expression (13) to finally obtain: 

1

4𝜋2
∬ 𝑁(𝑘𝑥, 𝑘𝑦)(∑ (𝐷2

∗𝑘𝑝𝑞
4 −𝑝𝑞

+∞

−∞

𝜔2𝜌2ℎ2)𝑏𝑝𝑞𝜙𝑝𝑞 − 𝐾𝑡
∗∑ 𝑎𝑛𝑚𝜙𝑛𝑚𝑛𝑚 +

𝐾𝑡
∗∑ 𝑏𝑝𝑞𝜙𝑝𝑞𝑝𝑞 )𝑒𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 = ∑ 𝑏𝑝𝑞𝜙𝑝𝑞𝑝𝑞

 (16) 

Once a multiplication by the modal shape 2 and an 

integration over the slab 2 surface, we obtain: 

∑ (𝐷2
∗𝑘𝑝𝑞
4 −𝜔2𝜌2ℎ2 + 𝐾𝑡

∗)𝑏𝑝𝑞𝛾𝑝𝑞𝑡𝑢
22

𝑝𝑞 −

𝐾𝑡
∗∑ 𝑎𝑛𝑚𝛾𝑛𝑚𝑡𝑢

21
𝑛𝑚 = 𝑏𝑡𝑢𝑆𝑡𝑢 (17) 

with 𝛾𝑝𝑞𝑡𝑢
22 = ∬ 𝑁(𝑘𝑥, 𝑘𝑦) 𝜙̃𝑝𝑞𝜙𝑡𝑢

∗ 𝑑𝑘𝑥𝑑𝑘𝑦
+∞

−∞
 and 

𝛾𝑛𝑚𝑡𝑢
21 = ∬ 𝑁(𝑘𝑥 , 𝑘𝑦) 𝜙̃𝑛𝑚𝜙𝑡𝑢

∗ 𝑑𝑘𝑥𝑑𝑘𝑦
+∞

−∞
. 

Similar as for equation (17) we multiply the slab 1 

equation of motion by the modal shape 1 and an 

integration over the slab 1 surface is performed to 

obtain: 

∑ ((𝐷1
∗𝑘𝑛𝑚
4 −𝜔2𝜌1ℎ1 + 𝐾𝑡

∗)𝑎𝑛𝑚 −𝑛𝑚

𝐹𝑛𝑚)𝛾𝑛𝑚𝑟𝑠
11 − 𝐾𝑡

∗∑ 𝑏𝑝𝑞𝛾𝑝𝑞𝑟𝑠
12

𝑝𝑞 = 0 (19) 

With 𝛾𝑛𝑚𝑟𝑠
11 = ∬ ∅𝑛𝑚∅𝑟𝑠𝑑𝑆𝑆1

 and 𝛾𝑝𝑞𝑟𝑠
12 =

∬ ∅𝑝𝑞∅𝑟𝑠𝑑𝑆𝑆1
.  

The linear system to evaluate is: 

{
 
 

 
 
∑ ((𝐷1

∗𝑘𝑛𝑚
4 −𝜔2𝜌1ℎ1 + 𝐾𝑡

∗)𝑎𝑛𝑚 − 𝐹𝑛𝑚)𝛾𝑛𝑚𝑟𝑠
11

𝑛𝑚

−𝐾𝑡
∗∑ 𝑏𝑝𝑞𝛾𝑝𝑞𝑟𝑠

12
𝑝𝑞 = 0

∑ (𝐷2
∗𝑘𝑝𝑞
4 −𝜔2𝜌2ℎ2 + 𝐾𝑡

∗)𝑏𝑝𝑞𝛾𝑝𝑞𝑡𝑢
22

𝑝𝑞

−𝐾𝑡
∗∑ 𝑎𝑛𝑚𝛾𝑛𝑚𝑡𝑢

21
𝑛𝑚 − 𝑏𝑡𝑢𝑆𝑡𝑢 = 0

 (21) 

which gives in matrix format: 

(
𝛾𝑛𝑚𝑟𝑠
11 (0)

(0) 𝛾𝑝𝑞𝑡𝑢
22 ) 

(
𝐷1
∗𝑘𝑛𝑚
4 −𝜔2𝜌1ℎ1 (0)

(0) 𝐷2
∗𝑘𝑝𝑞
4 −𝜔2𝜌2ℎ2

) {
𝑎𝑛𝑚
𝑏𝑝𝑞

} +

𝐾𝑡
∗ (

𝛾𝑛𝑚𝑟𝑠
11 −𝛾𝑝𝑞𝑟𝑠

12

−𝛾𝑛𝑚𝑡𝑢
21 𝛾𝑝𝑞𝑡𝑢

22 ) {
𝑎𝑛𝑚
𝑏𝑝𝑞

} −

(
(0) (0)
(0) 𝑆𝑡𝑢

) {
𝑎𝑛𝑚
𝑏𝑝𝑞

} = (
𝛾𝑛𝑚𝑟𝑠
11 (0)

(0) 𝛾𝑝𝑞𝑡𝑢
22 ) {

𝐹𝑛𝑚
(0)

}

 (22) 

 
In the present case, the number of mode of the slab 

1 and 2 will be identical as well as the surface so 

𝛾𝑛𝑚𝑡𝑢
21 = 𝛾𝑝𝑞𝑡𝑢

22 .  

It is now possible to give the expression of the 

modal amplitude by solving the linear system 

above. We are also interested to determine the 

displacement at the ground surface. The modal 

amplitude of the slabs allows to determine the 

ground displacement by carrying out an inverse 2D 

Fourier transform of expression (14): 

𝑢𝑧(𝑥, 𝑦, 0) = ∑ (𝐷2
∗𝑘𝑝𝑞
4 −𝜔2𝜌2ℎ2 +𝑝𝑞

𝐾𝑡
∗)𝑏𝑝𝑞𝑇𝑝𝑞(𝑥, 𝑦) − 𝐾𝑡

∗∑ 𝑎𝑛𝑚𝑇𝑛𝑚(𝑥, 𝑦)𝑛𝑚

 (24) 

with 

𝑇𝑝𝑞(𝑥, 𝑦) =
1

4𝜋4
∬ 𝑁(𝑘𝑥, 𝑘𝑦) 𝜙̃𝑝𝑞𝑒

𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦
+∞

−∞
 and 

Euronoise 2018 - Conference Proceedings

- 1433 -



 

 

𝑇𝑛𝑚(𝑥, 𝑦) =
1

4𝜋4
∬ 𝑁(𝑘𝑥, 𝑘𝑦) 𝜙̃𝑛𝑚𝑒

𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦
+∞

−∞
 

 

3. NUMERICAL RESULTS 

The modelling that is carried out here consists of 

an isolation mat commonly used for tramway 

platforms in order to mitigate vibration. 

For the sake of simplification in this study, only 

homogeneous semi-infinite ground is considered 

although the case of a stratified ground may be 

modelled. The ground that is considered has the 

following characteristics: 𝑐𝑝 = 700 𝑚. 𝑠
−1, 

𝑐𝑠 = 300 𝑚. 𝑠
−1, 𝜂𝑝 = 2%, 𝜂𝑠 = 2% and 𝜌 =

2000𝐾𝑔.𝑚−3. The slabs are a concrete slabs 

(𝐸𝑝 = 2.5 ∗ 10
10𝑃𝑎, 𝜌𝑝 = 2500𝐾𝑔.𝑚

−3, 𝜂𝑝 =
5%). 

The performance of the mat is given using the 

insertion loss, i.e the levels ratio with and without 

resilient mat. We can therefore formulate the 

insertion loss in dB by the following formula: 

𝐼𝐿𝑚𝑜𝑦 = 10. log10 (
|𝑢𝑧 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑎𝑡|

2

|𝑢𝑧 𝑤𝑖𝑡ℎ 𝑚𝑎𝑡|
2 ) (25) 

 

3.1. Rigid mass case  

One considers a small rectangular slab of 6m 

where the bending effects are initially neglected. 

Only the rigid body is taken into account which 

reduces the linear system (22) to the following 

system: 

(
𝜔2𝜌1ℎ1 0

0 𝜔2𝜌2ℎ2
) {
𝑤1
𝑤2
} +

(
1 −1

−𝐾𝑡
∗ 𝐾𝑡

∗ −
𝑆

𝛾0000

) {
𝑤1
𝑤2
} = {

𝐹
0
} (26) 

We recognize here a system with two degrees of 

freedom where the coupling with the ground is 

represented by the term −
𝑆

𝛾0000
. A mass-spring-

mass system has a frequency of resonance of 

𝑓𝑟𝑒𝑠 =
1

2𝜋
√𝐾𝑡 (

1

𝜌1ℎ1
+

1

𝜌2ℎ2
 ). The resilient that we 

consider has a Young's modulus of 10 000 Pa and 

thickness 3cm. Its stiffness is then 𝐾𝑡 =
12𝑀𝑁.𝑚−1 for a surface area of 36m². The aim 

here is to know if the coupling with the ground has 

an effect on the resonance frequency. The 

thickness of the upper slab 1 and lower slab 2 is 

20cm. Figure 2 shows the transmission loss in the 

case where the slab 2 is not coupled to the ground 

and coupled to the ground. The transmission loss 

in the case of coupling with the ground is very 

important due to the strong ground / structure 

coupling. In this case there is no more 

amplification. 

 
Figure 2 : Transmission loss between the slab 1 and 2 

with and without ground coupling 

We are interested in the insertion loss on the lower 

slab 2 that is to say the slab coupled to the ground. 

The insertion loss corresponds to the difference of 

level on the slab 2 with and without resilient mat. 

Figure 3 shows the insertion loss in the case of a 

slab which is not coupled to the ground and 

coupled to the ground. When the slab 2 is not 

coupled to the ground, the amplification of the 

system is at 27 Hz. On the other hand, when the 

slab 2 is coupled with the ground, this resonance 

frequency shifts in high frequency. This 

phenomenon is due to the ground added stiffness 

to the slab represented by the term−
𝑆

𝛾0000
 in 

equation (26). It should be noted that this term is 

variable with the frequency consequently the 

added rigidity to the system vary. In addition, the 

added stiffness by this term tends to 0 while 

increasing in frequency which is translated on the 

curves of Figure 3. 

 

Figure 3 : Insertion loss between the slab 1 and 2 with 

and without ground coupling 

3.2. Performance of the resilient depending 

on the thickness of slabs 
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We are interested in the variation of the thickness 

of slabs 1 and 2 on the insertion loss. We no longer 

consider the slab 2 of identical thickness for the 

determination of the insertion loss. In the case of a 

slab without resilient mat, the thickness is 60cm. 

From a practical point of view when we estimate 

an insertion loss of a tramway railway platform, 

the floating slab consists of two slabs of variable 

thickness while in the case of a classic slab we 

consider usually a slab thickness slab of 60cm 

 

Figure 4 - Insertion loss for different thickness of slab 2 

(20cm, 30cm and 40cm) 

 

Figure 5 - Insertion loss for different thickness of slab 1 

(20cm, 30cm and 40cm) 

3.3. Performance of the resilient depending 

on the stiffness of the mat 

We now consider the case of a tramway slab of 

20m long and 3m length. The force applied to the 

slab is a sum of uncorrelated force [5]. We look at 

the insertion loss between the level on the slab 2 

coupled to the ground of 20cm and a classical slab 

coupled to the ground of 60cm. The Young’s 

modulus of the resilient remains unchanged and is 

10 000Pa.  

Figure 6 corresponds to the insertion loss for 

different thickness of the elastomeric layer. The 

insertion loss is calculated at the ground top 

surface at 10m from the tramway slab. As the 

thickness of the layer is higher, the performance of 

isolation is better. The resonance frequency for the 

layer 3cm thick reaches 14dB at 80Hz however 

these performances are not perfectly similar if we 

look at the slab vibration. This is due to local 

behaviour of the ground. 

 

Figure 6 Insertion loss at the ground top surface at 10m 

from the tramway slab for different thickness of the 

elastomeric layer (ℎ𝑡 = 1𝑐𝑚, 2𝑐𝑚, 3𝑐𝑚) 

3.4. Influence of mechanical properties of 

the ground on resilient performances 

In this last section, we are interested with the 

influence of the ground on the performance of an 

elastomeric layer. We are still considering a 

tramway slab excited by a sum of uncorrelated 

force. We look at the insertion loss between the 

level for an isolated tramway slab (lower slab 

20cm, upper slab 60cm) and a classical slab 

coupled to the ground (60cm).  

Figure 7 shows the insertion loss on the slab for 

four different ground characteristics which are 

𝑐𝑠 = 200𝑚. 𝑠
−1, 𝑐𝑠 = 300𝑚. 𝑠

−1, 𝑐𝑠 = 400𝑚. 𝑠
−1 

and 𝑐𝑠 = 500𝑚. 𝑠
−1. As expected the resonance 

frequency at 25Hz for the softer ground shift to 

31.5Hz for stiffer ground. Close to the resonance 

frequency the performance may have large 

difference value however at higher frequency the 

performance is not influence by the ground 

characteristics. 

 

Figure 7 : Insertion loss on the tramway slab for 

different ground characteristics 

Euronoise 2018 - Conference Proceedings

- 1435 -



 

 

4. CONCLUSION 

We have presented in this paper an analytical 

modelling of a lofting slab which account for the 

flexural vibration for the structure as well as its 

rigid body. A parametric study shows that the 

ground has an influence on the resonance 

frequency of the system and should be considered 

while sizing a tramway floating slab. It has also 

been shown that the size of the floating slab has an 

important effect on the performance compared to 

the size of the lower slab. 
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