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Summary

Well-known classical strategies to mitigate vibrations induced by vehicles include buried trenches
and inertia blocks. Besides these strategies, innovative methods are being devised by researchers
using novel physical concepts. Periodic structures and metamaterials are one such concept, which
seem to be a very promising for real engineering applications. These devices interfere with wave
propagation in a controlled and tuned manner, and can be used for specific frequency bands. Some
of these concepts are well-developed for acoustic protection (noise barriers), as is the case of “sonic”
or “phononic” crystals, but the protection of vibrations by such structures is still in an earlier
development stage. The present paper presents a preliminary study on the concept of using a periodic
buried structure, made of repeated solid elements, disposed with a geometrical arrangement that
allows maximization of the shielding effect in the dominant vibration frequencies. The 3D finite
element model, formulated using tetrahedral elements, is used to perform a set of numerical
simulations, assessing the effectiveness of the proposed shielding device. The model simulates a set
of elastic inclusions, buried in a homogeneous host soil, under the incident of a propagating wave
generated by a line source. In order to improve computational efficiency, a time-marching algorithm
is used, and the time domain signals are then transformed to the frequency domain by means of a
FFT, allowing calculation of insertion loss results at receivers placed behind the shielding device.
The presented results reveal a good efficiency of these devices, and evidence the existence of a band
gap where large attenuation occurs. Comparison with results obtained for a standard buried wall
also allowed to observe that the use of the proposed strategy can lead to better attenuation results.

PACS no. 43.35.Cg, 43.35.Zc, 43.40.Le

1. Introduction and motivation sense, the concern with the vibrations extends to the

other transport systems, existing already several
Mitigation of vibrations that can affect sensible  strategies of mitigation like the well-known
constructions has been under discussion since the  trenches or buried walls. Nowadays, along with
middle of last century when high-speed trains, with these classic strategies, new and innovative
speeds above 200 km/h, emerged as regular  methodologies are being developed, assuming their
intercity transport [1]. Since then, people's health greater efficiency, using new physical concepts.
and comfort have become a top priority. In this These concepts are widely developed in the case of
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acoustic barriers and are at an early stage with
respect to vibration mitigation. In the case of
vibration mitigation, this concept is defined by
periodic buried structures (see Figure 1), disposed
in a geometrical arrangement, resulting in an
efficient barrier to the dominant vibration
frequencies.

Figure 1- New mitigation devices (inclusions)

The present paper follows previous works by the
authors in which numerical simulations are used to
better understand the propagation of vibrations in
the presence of periodic buried structures [2,3,4,5].
Here, to help simulate the effect of the inclusion of
those periodic structures, an innovative time-
marching algorithm supported by the 3D finite
element method was used [6].

2. Waves propagation

In a solid material excited by mechanical impulses,
three important types of waves are generated. The
compression waves (P) are those with the highest
propagation velocity, defined by equation 1 (E, v
and p being the Young modulus, Poisson ratio and
density). Those are longitudinal waves causing
displacements in the medium, parallel to the
direction of the wave. The shear waves (S) are
transverse waves causing displacements in the
medium, and they are perpendicular to the direction
of the propagation. These waves are slower than P
waves and their speed is defined by equation 2. The
surface waves are the slowest. For its low
frequency, long duration and large amplitude these
can usually be the most destructive. There are
several types of surface wave (such as Rayleigh and
Love). For the Rayleigh (R) waves, which
propagate along the surface, their velocity is
approximately that defined in equation 3. These
waves cause elliptical orbit displacements in the

medium particles and their amplitude decreases
rapidly with depth.

_ E(1-v)
Vp = \/p(1+v)(1—2v) (1)
E
Vs = \’Zp(1+v) (2)
0.87+1.12v E
VR = 1+v \IZp(1+v) )

3. Numerical model

The time-marching algorithm presented here is
based on the finite element method and, applied to
a dynamic, multidimensional and damped system,
can be mathematically defined by equation 4,

F(t) = Fi(¢) + Fp(¢) + Fs5(t) 4

were F(t) is the applied load, F;(t) = MU(t) is the
force of inertia, Fp (t) = CU(t) is the damping force
(considering a viscous damping) and Fg(t) =
KU(t) is the elastic force. U(t), U(t), U(t) are
respectively the acceleration, velocity and
displacement vectors dependent on time, t.

The governing equations of the algorithm and the
time integration strategy are presented in [6],
describing the basic aspects and the main
parameters of this novel formulation using finite
elements in the time domain. This paper presents
only the time marching equations used in this new
formulation, which are

1
! 1
EU™ = [Z4MUT S ecuUn
K( tun+2 c2un) (5)

— the velocity equation — and

1 1 1
EU"*1 = E <Un + E tu™ + E tUn+1> E t2cyntt

K((,Bblbz) 0 + (L + b, ) t3U"+1> (6)

— the displacement equation — where C is the
damping matrix, E = M+1< tC is the effective
matrix, M and K stand for the mass and stiffness
matrices, respectively; U, U and F stand for the
displacement, velocity and load vectors,
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respectively; n and t are the time-step number and
time-step length, respectively; § = 1, b; = 8.567 X
1073 and b, =8590%x 107! are the time
integration parameters of the new method;

n/2 — B tF" 4+ B, tF™! with B, = B, =1/
2, using trapezoidal quadrature rule or §; = 1 and
B, = 0, extending the explicit feature of the
technique to the load term (see [6] for more details).
The main features of this model, among others, are:
the method is based only on single-step
displacement-velocity relations; it requires no
system of equations to be dealt with; it is second-
order accurate. In other words, this model is very
effective, being able to provide accurate analyses
considering relatively large time steps (thus, also
being very efficient). Moreover, since it has high
stability limits, it minimizes the main drawback of
explicit procedures, allowing time-steps that are
usual in accurate implicit analyses, rendering good
results at reduced computational costs [6].

4. Numerical results

The strategy used in this article to evaluate the
effect of the presence of inclusions on the vibrations
registered in receivers, placed in the downstream
zone, was to determine the inclusions insertion loss
and then compare the results with classical devices,
in this case, using buried walls with the same
material characteristics of the inclusions.

To determine the inclusions’ insertion loss, it was
performed a study without any type of mitigating
devices and then, a set of three parallelepiped
inclusions with quadrangular base of 0.6 m width.
Sets of inclusions with three distinct depths and two
types of materials were studied. Finally, a wall with
the inclusion width, at the distance of the closest
inclusion of the load, with the same three depths and
with the same material properties of the inclusions
was considered. For all the studies a host medium
with density p,=1700 Kg/m3, Young’s modulus
En=115.76x10° Pa and Poisson’s ratio vn,=0.33,
was considered. These thirteen studies, summarized
in the Table 1, where the mitigation devices
material properties are defined, were performed
using the finite element method that integrates the
time-marching algorithm described above.
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Table 1 — Summary of studies carried out

mitigating devices
Study é Depth Densit3y PoissF)n’s Young’s
| [m] [Kg/m’] ratio modulus [Pa]

M1 (no mitigating devices)
I 1
12 g 3 2100 0.25 2.7 x 10°
I3 |z 5
4 2 1
15 || 3 2700 0.2 27 x 10°
16 5
W1 1
W2 3 2100 0.25 2.7 x 10°
W3 | = 5
w4 |Z| 1
W5 3 2700 0.2 27 x 10°
Wé 5

The geometric scheme of the model is shown in
Figure 2. In this figure, an absorption layer is
shown, 6 m wide, necessary to define an infinite
medium in the model. This layer, which has the
width of at least one wavelength, is responsible for
absorbing all the energy that enters it, avoiding
unwanted reflections in the system under study.
Since the propagation domain is infinite, the load is
a line load, and the structure is repeated infinitely
along one direction, only a 1.2 m wide slice was
modeled, and adequate boundary conditions were
used to simulate the infinite character of the
problem. The system is excited by a Ricker pulse
whose source is located 10 m right of the system
origin. The mitigation devices begin 10 m to the
right of the excitation point. The proposed
mitigation device consists of a periodic set of three
inclusions spaced apart by 0.6 m. Three sets of
inclusions are considered, with different depths of
1, 3 and 5 m. In addition, two different materials
were considered for the inclusion (see Table 1). To
demonstrate the efficiency of these devices, the
effect of a buried wall, 10 m from the source of
excitation, was also studied. Similar to the three sets
of inclusions, three wall depths were considered,
and with the same materials used in the inclusions.
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Figure 2— Schematic representation of the model used for the wave propagation analysis

Numerical simulations were performed using the
3D finite element method in the time domain,
formulated using regular tetrahedral elements. The
time marching algorithm described above was
recently developed by Soares Jr. [6] and is adopted
to render the numerical process more efficient. A
damping factor equal to 1% and a propagating
Ricker pulse with a central frequency of 60 Hz were
considered.

Figure 3 shows the results obtained with a set of
three lines of inclusions and with a buried wall, both

x 1010

Displacement X
T T T T

Il Host medium only
l Poor inclusions 5 m depth
I Poor wall 5 m depth

a) Host medium vs Poor devices

Amplitude [m]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time [s]

with 5 m depth, comparing the response for the
propagation in a homogeneous medium with that
considering the different devices, with a) a poorer
material and b) a stiffer material. Note that the
difference in stiffness in the buried wall material
does not lead to a significant difference in results.
Of the studied cases, this difference is more
pronounced in the 3 m depth wall (not shown).
Another note that can be made by observing this
figure is that the set of poorer inclusions produces
practically the same result as the buried stiff wall.

x 1010 Displacement X
T T : T

0 Host medium only
I Stiff inclusions 5 m depth)|
[ Stiff wall 5 m depth

10+ ‘ \‘ b) Host medium vs Stiff devices |

Amplitude [m]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time [s]

Figure 3— Comparison between types of mitigation devices, 5 m depth, and their stiffness: a) poor and b) stiff

Figure 4 shows snapshots of the wavefield, in terms
of horizontal displacements, computed in the
presence of a set of inclusions and of a buried wall.
Here, the interference of the buried devices is clear,
with a more complex wave pattern being visible
when multiple inclusions are considered. This is
particularly evident for later times. These snapshots

also evidence that a considerable fraction of the
energy is reflected back by both the inclusions and
the wall, showing the intended shielding effect.
Additionally, from these figures surface waves
seem to have a strong importance, as expected. It
can also be seen that no spurious reflections from
the artificial damping layer seem to occur.
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Figure 4— Temporal evolution: stiff inclusions 3 m depth (left) and stiff wall 3 m depth (right)

Figures 5 and 6 show the vibration levels detected
at a receiver 25 m from the source, beyond the
mitigation devices. These levels are computed in
the frequency domain, after application of a
Fourier-transform to the time signals computed
using the TD-FEM algorithm. To better observe the
global behavior, the response is grouped in
frequency bands 16 Hz wide.

From these figures, it can be seen that all sets of
mitigation measures allow a reduction of the
vibration levels, although acting differently
throughout the frequency range.

To better understand the results, Figure 7 shows the
reduction of vibration estimated for each scenario,
for the three depths studied, and for the two types
of elastic material composing the inclusions and
walls. To evaluate the effect of the presence of

mitigation devices in the vibrations registered in the
receiver, the reduction is computed in terms of
insertion loss, /L, that is defined as the difference
between the vibration levels obtained in the
presence of mitigation devices (L1) and the
displacement vibration levels obtained without
those devices (L0). This is given in dB by the
following Equation 7:

IL=L0 L1=20loglus| 20loglu,| (7)
According to Equation 7, positive values
correspond to a reduction of the displacement
vibration levels in the presence of mitigation
devices and negative values of the insertion loss
stand for losing protective solutions efficiency.
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Figure 5— Vibration levels with a) stiff inclusions and b) buried walls
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Figure 6— Vibration levels with a) 3 m and b) 5 m depth of mitigation devices

From the results in Figure 7 it becomes clear that
the insertion loss tends to increase with the
frequency of the excitation load. However, it seems
that for the case of the periodic array of inclusions
a peak in the insertion loss occurs between 40 and
100 Hz, for which frequencies the efficiency of this
solution surpasses that of the traditional buried wall.
If surface (Rayleigh) waves are considered, which
propagate in the soil with an approximate velocity
of 149 m/s, and taking into account that the
inclusions are equally spaced 1.2m, this frequency
range seems to match what is usually considered as
the band gap frequency in sonic crystals (f=c/2d),
which should occur around 62Hz. This finding is
quite important, and indicates that the mitigation
solution can be tuned depending on the frequency
band to mitigate and on the properties of the host
medium. It should be noted that this effect is even
more pronounced when inclusions (and walls) Sm

deep are considered, as depicted in Figure 7b. For
this case, a peak is quite evident in the identified
frequency interval, for which IL values around 4dB
higher than those computed for the buried walls of
the same material are registered. It should also be
said that the more traditional solution of a buried
wall seems to reach improved performance for
higher frequencies, and to have a broader frequency
range for which vibration attenuation is provided.
Regarding the type of material used in the
protection devices, it can be seen that, as expected,
using a stiffer material leads to a better
performance, with higher values of insertion loss
being reached. Indeed, for this case a stronger
contrast of properties between the soil and the
devices exists, and allows stronger energy
reflections to occur.
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Figure 7— Insertion loss of the mitigation devices with depths of a) 3 m and b) 5 m.

5. Conclusions

This paper has presented and studied the effect of a
periodic set of buried inclusions in the propagation
of vibrations in a homogeneous soil. A TD-FEM
algorithm is used for that purpose, making use of a
recently proposed and efficient time marching
scheme. The computed results are quite promising,
and reveal the existence of a specific frequency
band for which higher vibration attenuation seems
to occur. These band can be related to the effect of
multiple interactions between the buried inclusions,
as is usually seen in acoustics when analyzing sonic
crystals.
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