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Summary 

The fast and accurate calculation of the diffracted signal caused by edges is important in many 

practical cases such as road traffic noise diffracted by noise barriers. The authors presented in the 

past an impulse response solution for diffraction by edges. The diffracted signal is obtained by 

convolving the impulse response function with any given incident signal. In numerical 

calculations the impulse response requires fine time sampling to describe its starting values, where 

it becomes infinite. As a result, the computational time required, to produce convergent/accurate 

predictions, increases dramatically, particularly in cases involving multiple receivers. In the 

present work two methods are presented that reduce the computational time. The first is based on 

the generator curve, a curve that embodies/generates all impulse response functions produced for 

any source/receiver configuration, thus allowing faster impulse response calculations.  The second 

method relies on the partial time antiderivatives of the impulse response, which are proven to be 

continuous non-singular functions, expressed in close form, which can replace the impulse 

response in predicting the diffracted signal. Compared to the impulse response the antiderivatives 

can produce convergent results with much lesser time samples, thus achieving significant 

computational advantage. Finally, generator curves are derived for the antiderivatives as well, 

improving their performance even further. 

PACS no. 43.20El, 43.50Gf 

 
1. Introduction

1
 

Edge diffraction is important to many areas of 

acoustics ranging from traffic noise barriers [1] 

and urban noise [2], to room acoustics [3]. The 

problem of diffraction by the edge of a half-plane 

has been extensively studied in both frequency and 

time domain [1]. In the time domain the solutions 

span from analytical solutions, both rigorous [4] 

and approximate [5], to experimental investigation 

[6] and numerical simulations [7].  

In the present study we employ an analytical time 

domain solution [8], whose unique 

                                                      

 

 

characteristics/properties allow a significant 

reduction in the computational cost of predicting 

the diffracted signal around a noise barrier 

modeled as an infinitely thin half plane.  

The typical geometry of a half plane diffraction 

problem is shown in Figure 1.  

 

The positions of the source  0 0 0, ,zS r   and the 

receiver  , ,R r z  are given with cylindrical 

Figure 1. Geometry of the half plane diffraction 

problem; perspective view (a), side view (b). 
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coordinates. The radial distance r  is measured 

from the edge of the half-plane and the angle   is 

measured from the surface of the half-plane facing 

the source. The shortest distance that the sound 

travels to reach the receiver by diffraction is L . 

The direct distance between the source and the 

receiver is denoted by 1R , while the distance from 

the image source to the receiver by 2R . 

According to geometrical acoustics, region III  

(see Figure 1b) is a shadow zone, region II  

includes only the incident signal, and in region I  

both the incident and the reflected (from the 

surface of the half plane) signals are present. The 

diffracted signal is present in all three regions. The 

present work focuses on this latter contribution, 

the diffracted signal around the half plane and 

specifically on methods to reduce the cost of its 

computation.  

 

1.1. Analytical impulse response solution 

 

The authors have presented an analytical impulse 

response solution d

irfp  [8] which, unlike other time 

domain models has a unified form for every type 

of incident radiation i.e. for plane, spherically and, 

cylindrically spreading incident signals. In the 

present work, results are presented for spherical 

incident signals and the reader is referred to ref. 

[8] for appropriate changes in the solution 

parameters that make the solution applicable to 

plane and cylindrically spreading incident signals, 

as well as to diffraction by wedges.  
The impulse response derived in ref. [8] will be 

used in the present work as a function of 

diffraction time   - i.e the retarded time that starts 

the moment the diffracted signal arrives at the 

receiver dt t   , where for spherical incident 

signal the arrival time dt becomes 

  =dt L c  , (1) 

where c  is the speed of sound. 

Specifically, the impulse response solution is   
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where the first terms in equations 4, 5, id , di

irfp , 

and the parameters 1t , 1  are associated with the 

incident signal, while the terms, rd , dr

irfp , and the 

parameters 2t , 2  are associated with the signal 

reflected from the surface of the half plane. The 

factor I  is proportional to the Green’s function 

solution of the 2D wave equation representing 

radiation from a line source, where ( )H   is the 

Heaviside or unit step function. The function d

describes the directionality of the line source, 

while the product ( )I d represents radiation from 

a directional line source. The factor tA   depends 

on the type of the incident signal, 

 
0

1
 =tA

rr
 . (6) 

The parameters 1t  and 2t  have units of time and 

depend on various geometrical distances of the 

problem. For spherical incident signal become 

 0
1,2

1,2

 =
( )

rr
t

c L R




 . (7) 

The angle parameters 1  and 2  are functions of 

the angular positions of source and receiver, 

 0
1,2

2 2
cos

2

 



 
   

 
 . (8) 

Finally, the quantities 
i

lag  and 
r

lag  are given by, 

 
, 2

1,2 1,20.5i r

lag t   ,  (9) 

are termed diffraction delay times, and represent 

the time delay of the arrival of the diffracted 

signal compared to the arrival of the free field 

signal and the reflected signal, respectively. 

The solution (equations 2-5) is exact for plane 

incident signals, while approximate for cylindrical 

and spherical incident signals being valid for 

/ 1incL cT   —where incT  is the duration of the 

incident signal (i.e., invalid when both source and 

receiver are within one spatial extent of the 

incident signal, inccT , from the edge).  
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1.2. Digital convolution 

 

The diffracted pulse dp , produced when an 

arbitrary incident signal f  reaches the edge of the 

half plane, is calculated as the result of the 

convolution of 
d

irfp  with f , 

 ,d di dr di dr

irf irfp p p p f p f        (10) 

where 
di

irfp f  is associated with the incident 

signal and 
dr

irfp f , with the reflected signal.  

A first observation for the convolution in equation 

10 comes from the mathematical form of the 

impulse response 
d

irfp , which goes to infinity as 

0  . Thus, in numerical calculations a finer 

time sampling is required at the front of the 

diffracted signal in order to accurately predict the 

slope of the impulse response at its starting times. 

The computational time is then increased, 

especially for cases where the calculation of 
d

irfp  

is performed for multiple receivers. To increase 

the speed of the numerical evaluation of 
d

irfp  a 

characteristic property of 
d

irfp  will be used. 

Specifically, the generator curve method detailed 

in section 2 
In numerical computations the incident signal is 

sampled with a time step d  on M  time samples 

 mf , while 
di

irfp  is discretized with the same d  

on J  time samples  di

irf j
p with J M for finite 

incident signals (the impulse response has a larger 

duration than incT  to describe the ending/tail of the 

diffracted signal) and J M  for infinite incident 

signals. The k -th element of the digital 

convolution  di

irf k
p f  is given by the summation, 

     1

1

k
di di

irf irf k jk j
j

p f p f  



   . (11) 

The convergence of the summation in equation 11 

is highly affected by the form of 
di

irfp . (recall that, 
di

irfp  goes to infinity as 0  ). As a result, the 

finer time sampling of 
di

irfp  (smaller d ) is not 

only required to correctly describe its values at the 

starting diffraction times (as discussed in previous 

paragraph), but also to yield converged/accurate 

results when convolved with the incident signal f  

(see equation 11). On the other hand, large 

numbers of time samples lead to dramatic increase 

of the computational speed. Therefore, a possible 

reformulation of equation 10, in which di

irfp  is 

replaced by a non-singular and continuous 

function can provide convergent results for coarser 

time sampling and smaller calculation time. 

In section 3 a set of such functions is introduced. 

The performance of these functions in the 

diffracted signal calculation can be further 

improved with the derivation of their 

corresponding generator curves, as it will be 

demonstrated in section 4.   

 

2. Generator Curve Method 

2.1.     Theory 

 

As demonstrated in previous work of the authors 

[8] the information of the impulse response for 

every source-receiver configuration and all 

diffraction times can be contained into a single 

curve, namely, the generator curve,  , ,i r i rE   , 

  
 

, ,

, ,

4 2

1

i r i r

i r i r
E

 
 

  
 , (12) 

(shown in Figure 2), where the parameters i  

(associated with the incident signal) and r  

(associated with the reflected signal) are 

dimensionless, termed diffraction numbers, and 

defined as 

 ,     i r

i r

lag lag

 

 
     ,  (13) 

while the scaled edge sources iE  and rE  are also 

positive dimensionless quantities related to ,di dr

irfp  

as follows, 

 
 1,2, ,

2

1,2 1,2

1

4

di dr i r

irf t

d

sign
p A E

t t


 


 . (14) 

The scaled edge sources ,i rE  express the product 

 , ,i rI d  representing radiation from a directive 

line source, scaled by   2

1,2 1 1,2dsign t t  . The 

diffraction numbers ,i r   express the diffraction 

time   normalized by the diffraction delay 
,i r

lag  

(equation 9) and they can be thought of as 

universal parameters of diffraction. They represent 

diffraction time so normalized as to be 

independent of the source–receiver configuration 

(that is of the source–receiver location and also of 

the type of the incident signal). As demonstrated 

in ref. [8], the generator curve embodies/generates 

(i) all diffracted signals produced for any source– 
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receiver configuration, and (ii) the diffracted field 

around the half plane produced by any source at 

any diffraction time. For example, a random time 

  corresponds to one value of  i  (see equation 

13) and thus to one value of iE , (equation 12) 

which when multiplied by the factor 

 1

2

1 1

1

4
t

d

sign
A

t t





 (equation 14) yields the value of 

di

irfp . 

  

In numerical calculations, which involve multiple 

source-receiver configurations, predicting the 

impulse response using the generator curve 

(equations 12-14) should provide significant 

computational advantage compared to direct 

computation (equations 2-5) of d

irfp , as the 

generator curve is only computed once, while 

direct computation must be performed separately 

for each source-receiver configuration. 

2.2  Computational results 

 

In the following, it is demonstrated that the 

impulse response, d

irfp , can be predicted by the 

generator curve method (equations 12-14) at a 

fraction of computational cost involved in direct 

computations (equations 2-5). For the purposes of 

comparison, an example of practical interest is 

considered. 

Figure 3 shows an example of a traffic noise 

barrier shielding a city block. The barrier 

installation leaves the entire city block in the 

shadow region (see Figure 3b). The diffracted 

signal is calculated on a receiver grid of size GxG, 

which lies on a plane perpendicular to the y -axis, 

just in front of the city block (see Figure 3b). 

Figure 4 shows the achieved reduction of the CPU 

time when the generator curve (equations 12-14) is 

used instead of direct computation of 
d

irfp  

(equations 2-5). The impulse response is computed 

for two different numbers of time samples 

1000M  ( Figure 4a) and 2000M   (Figure 4b) 

on a grid of receiver locations shown in Figure 3.  
The reduction of the CPU time provided by 
generator curve method appears to increase, as the 
number of time samples and the grid size is 
increased. All calculations have been performed 
with MATLAB on a personal computer with Intel 
core i7-4710HQ at 2.50 GHz.  

 

3. Antiderivatives method 

In the previous section it was shown that the 

computation of the impulse response 
d

irfp  can be 

accelerated using the generator curve. The 

computation of the diffracted pulse dp  (equation 

10) however, remains costly as the extra small 

time step d  required to handle the initial points 

of 
d

irfp    as 0d

irfp    affects dramatically 

the computational speed of digital convolution 

(equation 11). In this section, 
d

irfp  (used to 

compute equation 10) will be replaced with 

another non-singular and continuous function that 

will allow accurate convolution calculations at 

coarser time sampling. 
 

 

 

 

Figure 3. Geometry of a traffic noise barrier shielding 

a  city block; perspective view (a), side view (b).  

 

 

 

 

Figure 2. Generator curve  (equation 12) of 

the impulse response solution . 

 

 

 

 

 

 

 

 

 

 

Figure 4. CPU time required to calculate the impulse 

response, , versus the receiver grid size GxG 

(receivers and source as shown in Figure 3), by direct 

computations (equations 2-5) (solid line) and by the 

generator curve method (equations 12-14) (dashed  

line) for  timesamples (a), and  

time samples (b). 
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3.1     Theory 

 

A set of useful functions that can replace 
d

irfp  in 
the convolution process (equation 10) is 
introduced. The analysis is shown only for 

di

irfp  
associated with the incident signal (see equations 
4 and 5), but it is similar for 

dr

irfp  associated with 
the reflected signal. 
Consider a set of functions ,  1,2...di

na n  . such  
that 

di

irfp  is the n-th order partial time derivative of 
di

na , 

 
n di

din
irfn

a
p







 . (15) 

The function di

na  is called n-th order partial time 

antiderivative of 
di

irfp . An advantage of the 

specific analytical solution 
di

irfp  employed here is 

that its antiderivatives di

na  exist for every physical 

number n  and can be expressed in a closed form. 

Specifically, for the first three orders, 
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, (16) 

where  
1

, ,

1,2 1,2 / .i r i r

us t d lagc A t t  


     

Using the differentiation property of the 

convolution it can be proven that, instead of the 

impulse response, its antiderivatives can be used 

to compute the convolution  

 1
1 ,

di
di di di

irf

a f
p p f f a

 

 
     

 
  (17) 

which can be generalized into, 

 
n

di di

n n

f
p a




 


 . (18) 

For convenience when referring to equation 18, 

we will denote 0

di di

irfp a  and  
0

0

f
f







.  

Figure 5 shows the antiderivatives up to order 

3n   convolved with the corresponding thn   
order time derivative of the incident signal (a one-

period sinusoidal pulse).  

The main difference between the impulse response 

 0

dia  and its antiderivatives , 1,2..di

na n   is the 

limiting behavior close to zero. The former goes to 

infinity 0 (0)dia   , while the latter are 

continuous and bounded at zero 
 0 0, 1,2,..di

na n    . As a result, in numerical 

calculations the traditional employment of the 

impulse response for the convolution requires very 

small time interval  d  to accurately compute 

the values around 0 and to produce convergent 

results, while employment of antiderivatives 

requires much coarser time sampling, which is 

translated to significant computational advantage, 

as it will be discussed in detail in the next section. 

3.2     Computational results 

In the previous section it was shown how a 

diffracted pulse can be calculated using any order 

n  of equation 18. In this section it is examined, 

firstly, for which order n  this result converges to 

an accurate prediction, as the number of time 

samples increases. Secondly, how much 

computational time is required to complete a dip  

prediction using the n-th order of equation 18 for a 

certain level of accuracy. Specifically, it will be 

Figure 5. The diffracted pulse  (right column) 

predicted by equation  18 as convolution of   (left 

column) with  (middle column) for several orders 

; incident signal 

; source at 

; receiver at 

. 
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shown that: (i) orders 3n   should not be 

employed due to numerical oscillations introduced 

in the computation of the time derivatives as 

0d  , (ii) orders 1,  2n n   require much 

fewer time samples than 0n   to achieve the same 

level of accuracy, and (iii) employment of orders 

1,  2n n   reduces the CPU time by orders of 

magnitude compared to the traditional 

employment of the impulse response function 
 0n   for the same level of accuracy.  

A numerical example is depicted in Figure 6 with 

incident signal a one-period sinusoidal pulse 

 sin 2 ,  0 0.01inc incf T T s     . The 

diffracted pulse dip  is calculated by equation 18 

up to order 3n  . For each order, several 

sampling time steps d  are used, spanning from 
410d s   (coarser sampling) to 810d s   (finer 

sampling). The order 0n   (impulse response 

prediction) is expected to yield the correct result 

as 0d  . Thus, as benchmark prediction of dip , 

we use an impulse response prediction 

   
0 0

di di

irfd d
p p f

 
  measured on an extra fine 

time array, having 0d , so that 0d d   for 

every d . Then the error of convergence for each 

order n  is defined as the maximum relative 

difference between the diffracted signal predicted 

by equation 18 with d  and the benchmark 

prediction, 

 
 

 

 

 
0

0

max .

n
di di

n irfn d
dn

d di

irf d

f
a p f

err
p f










  
    
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  
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 (19) 

 

It is emphasized that, n

derr   is not only a measure 

of convergence but also, a measure of accuracy 

since, the extra fine  
0

di

irf d
p f


 yields the correct 

values to predict dip . 

Figure 6 shows n

derr   versus the sampling time 

step d , for each order of 
n

di

n n

f
a







  up to 3.n   

As 0d  , the prediction 
n

di

n n

f
a







, appears to 

converge to accurate values  0n

derr    for all 

depicted orders except 3n  . The latter is 

attributed to the derivative term 
n

n

f






, as it has 

been observed that the numerical differentiation 

produces oscillations for orders higher than 3n   

when 0d  . From the orders n that do converge 

to accurate values  0,1,2n  , the impulse 

response prediction  0n  requires a much finer 

time sampling to achieve a level of error n

derr  , 

while the orders 1n   and 2n   can reach the 

same level n

derr   using much fewer time samples. 

This phenomenon is, as discussed in the 

introduction (section 1.2), a result of the high 

resolution, that is required in the discretization of 
di

irfp  to describe its starting times, where 
di

irfp  goes 

to infinity. Finally, as the 2n   order converges 

faster to very small n

derr   it is the recommended 

choice for the diffracted pulse prediction.  

In practical applications the diffracted signal will 

be calculated at several locations around the 

barrier and the convolution operation will be 

performed multiple times. Thus it is essential to 

provide an estimation of the CPU cost of the 

application of each method for specific accuracy.  

Figure 7 presents an example of CPU time 

performance of the 0,1,2n   orders of equation 18 

in predicting the entire diffracted signal  

 d di drp p p   on a receiver grid (shown in 

Figure 3) of size 50 50 , for accuracy 2%n

derr   . 

As expected the orders 1n   and 2n   improve 

the computation speed of the impulse response 

prediction by an order of magnitude, with the 

2n   order requiring the less CPU time to 

compute. Calculations have been performed with 

MATLAB on a personal computer with Intel core 

i7-4710HQ 2.50GHz processor.

Figure 7. CPU time required to calculate the diffracted 

signal   with accuracy  on a receiver grid 

of size 50x50 (receivers and source as shown in Figure 

3) for several orders  of equation 18; incident signal 

;   

Figure 6. Error   (equation 19) versus sampling 

time step  of  equation  18 up to order ; 

incident signal ;  

source at ; receiver at 

. 
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4. Generator curve method for the 
antiderivatives 

 

In the present section, the theory of the generator 

curve is extended to the antiderivatves of the 

impulse response (described in section 3) in order 

to further enhance their computational 

performance. 

 

4.1. Theory 

 

For the n-th  1,2...n   order antiderivative two 

quantities are defined as scaled antiderivatives i

ng  

and r

ng  of the n-th order, 

 
 

 

1
1

1
1

n
i i i di

n us lag n

n
r r r dr

n us lag n

g c a

g c a











 
 
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 . (20) 

It can be proven that, i

ng  and r

ng  can be expressed 

as single-variable functions of the diffraction 

numbers i  and r , respectively. Specifically, 

for the first three orders, 
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   
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, ,

1

, , , ,

2

2
, , ,

3

, , ,

arctan
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.     (21) 

Just as the scaled edge sources  i iE   and 
 r rE  , the scaled antiderivatives for each order 

n are described by a single-variable function that 

forms the corresponding generator curve.  

Figure 8 depicts the generator curves for the 

orders 1n   and 2n  .  , ,i r i rE   can be 

considered a generator curve ,

0

i rg  of order 0n  . 

The generator curve can be used, as described in 

section 2 for the impulse response, to predict the 

antiderivatives di

na  and dr

na  for any source-receiver 

configuration at any diffraction time   by 

specifying its corresponding i  and r (equation 

13) from the generator curve and scaling the 

corresponding i

ng  and r

ng  as, 
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.  (22) 

 

As opposed to direct computations of di

na  and dr

na , 

the generator curve,  , ,i r i r

ng  , is only calculated 

once and thus it is expected to reduce the time of 

calculations. 

4.2 Computational results 

 

In the following the generator curves for the 

partial antiderivatives of orders 1n   and 2n   

will be used to further accelerate the prediction of 

the diffracted signal. The presented comparisons 

regard the noise barrier-city block geometry 

shown in Figure 3. The diffracted signal is 

measured on a grid of receiver locations. In direct 

computations, di

na  and dr

na  are calculated at all 

diffraction times are then convolved with their 

corresponding time derivative of the incident 

signal. On the other hand, the generator curve is 

only computed once, its values i

ng  and r

ng  are 

assigned to the proper   for every receiver 

(equation 13), scaled according to equation 22, 

and then convolved with the corresponding time 

derivative of the incident signal.  

Figure 9 shows CPU time (required to calculate 

the diffracted signal dp ) comparisons between 

direct (equation 16) and generator curve (equation 

21)  computations for the antiderivatives of order 

1n   and 2n  , both for accuracy 2%n

derr   . 

Two grids have been simulated one of size 

1000x1000 (see Figure 9a) and another of size 

1500x1500 (see Figure 9b). As expected the 

generator curve method is faster in all cases. It is 

also observed that the CPU time reduction 

increases as the grid size increases.   

 

 

 

 

 

 

 

Figure 8. Generator curve  (equation 21) of the 

antiderivatives of order  (a) and  (b). 
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5. Conclusions 

The present work focuses on reducing the 

computational cost required to produce accurate 

diffracted signal predictions. The analysis starts 

from an impulse response solution derived in 

previous work of the authors. The impulse 

response goes to infinity at its starting times. As a 

result, in numerical calculations, the impulse 

response requires dense time sampling not only to 

accurately describe its starting behavior but also, 

to yield convergent results when convolved with 

the incident signal to predict the diffracted signal. 

The later requirement affects the computational 

speed dramatically, especially for cases involving 

multiple receivers, considering that the digital 

convolution is computed as a summation for every 

time sample. 

To deal with these issues, the authors have 

presented two new methods in predicting the 

diffracted signal. The first is the generator curve 

method. The generator curve  , ,i r i rE    

embodies/generates all impulse response functions 

at all diffraction times. The generator curve 

method has been found to accelerate the impulse 

response calculation, as  , ,i r i rE   is computed 

once and then its values are stretched and scaled to 

produce the impulse response for any source-

receiver configuration. 
The second method is based on the impulse 

response time partial antiderivatives ,di dr

na . The 

antiderivatives as opposed to the impulse response 

are continuous and non-singular functions, which 

when convolved with the corresponding time 

derivative 
n

n

f






 of the incident signal f  can 

predict the diffracted signal. The performance of 

the antiderivatives of several orders has been 

tested with numerical examples. The orders 1n   

and 2n   have been found to produce convergent 

results with much lesser times samples than those 

required for the impulse response. As a result the 

1n   and 2n   antiderivatives can reduce the 

computation speed of the diffracted signal by an 

order of magnitude, with 2n   being faster than 

1n   in the presented examples. 

The performance of the antiderivatives method has 

been further improved with the introduction of the 

antiderivatives generator curves  , ,i r i rg  . Just as 

the generator curve of the impulse response, ,i rg  

generates ,di dr

na at any soure-receiver configuration 

and any diffraction time. Thus, in cases involving 

multiple receivers it is only computed once and its 

values are stretched and scaled to produce a faster 

result compared to direct computations of ,di dr

na .  
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Figure 9. CPU time required to calculate the 

diffracted signal  with  accuracy by 

direct computations (equations 16, 18) (black color) 

and by the generator curve method (equations 13, 18, 

21, 22) (grey color) on a receiver grid (receivers and 

source as shown in Figure 3) of size 1000x1000 (a) 

and 1500x1500 (b); incident signal 

. 
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