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Summary 

User centric noise source ranking is proposed as an extension to the conventional machinery noise 
ranking methodology. It focuses on the improvement of the machinery operator and additional 
personnel working conditions. Similar to the conventional noise ranking methodology, the partial 
noise sources are identified and their joint effect is evaluated. In the user centric noise ranking, the 
location where the combined noise effect is evaluated is the user or operator position. The operator 
may be inside a cabin, or directly exposed to the noise. Additionally, the noise data is analysed with 
psychoacoustic methods to obtain the noise annoyance for the experienced noise. This approach has 
been evaluated with acquired data from hard rock mining equipment working in real conditions. As 
an additional requirements, user centric noise source ranking also limits the used component 
analysis methods and ways to acquire the noise data, and some signal source separation methods do 
not work properly. Psychoacoustic analysis methods employed require acquisition of sound pressure 
as a time series, and this limits the available algorithms. This creates new demands for the data 
acquisition and analysis methods, but the possible benefits will outweigh them. 
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1. Introduction 

User centric noise source ranking is proposed as 
an extension to the conventional machinery noise 
ranking methodology [1]–[3]. It focuses on the 
improvement of the machinery operator and 
additional personnel working conditions. Similar 
to the conventional noise ranking methodology, 
the partial noise sources are identified and their 
joint effect is evaluated. Such work has been 
carried out in our earlier research in a simple form 
[4]. Now we have expanded this work towards 
more systematic approach than earlier. 
As with the conventional noise control, the 
connection to the underlying vibration and noise 
generation mechanics are recognised, and 
appropriate measures to decrease the noise effects 
on the operator are carried out. They include the 
effects on the noise sources, transmission path, 
and the receiving person. 
The most important way to reduce the noise 
effects on the user or operator is to change the 
properties of the noise source. The difference here 

compared to the conventional noise source 
ranking and noise abatement methods is the way 
to monitor the results: the situation directly at the 
operator is observed and changes are made 
corresponding to this.  
The secondary level to affect is the noise 
transmission path. Again, the methods are same as 
with the conventional noise control, and only the 
way to monitor the results differs. 
Finally, the last part of the noise propagation 
chain is the operator and operator’s PPE (personal 
protection equipment). Also this part of the 
protection is evaluated by the user experience.  
User centric noise source ranking limits the used 
component analysis methods and ways to acquire 
the noise data. This is because psychoacoustic 
analysis methods require acquisition of sound 
pressure as a time series. This creates new 
demands for the data acquisition methods, as well 
as signal source separation algorithms because 
many frequency domain methods may not be 
utilised. 
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Figure 1. The psychoacoustic ranking and machinery 
improvement cycle. 

2. Psychoacoustic evaluation principle  

The Figure 1 illustrates the idea of the 
psychoacoustic ranking cycle to improve the 
machinery noise conditions. At the very center of 
matters is the machinery itself. Derived from this 
machinery and also in parallel to it is the 
machinery simulation model, including geometry 
and other possible parameters for mechanics, 
noise, thermal conditions, electronics and control 
systems, to mention a few.  
The noise data is possible to acquire either from a 
real machinery, if it already exists, or from a 
simulation model. We have used a specific tool 
called Audible Modeling Platform for this 
purpose [5]–[7].  
When we have either simulated or recorded data 
we can carry out psychoacoustic evaluation of the 
noise, shown also in detail in Figure 2. The 
psychoacoustic evaluation consists of 2 main 
paths: listening tests and calculation of the values 
directly. From listening tests it is possible to have 
direct sound quality and annoyance results. From 
the individual, calculated psychoacoustic metrics 
it is necessary to make a combination metrics 
describing the total effect of the noise. Such 
combination metrics may be generated with a 
ready-made combination equation, such as 
Unbiased Annoyance [8], or it may be formulated 
by the results of the listening tests for each 
individual case. The combination metrics make it 
possible to compare different cases and rank their 
effects in a certain order.  
In addition to the psychoacoustic evaluation, 
noise data is analysed using conventional metrics 
and visualisation methods, including sound levels 

and spectrograms. Also, other relevant 
measurement results are combined with the 
psychoacoustic evaluation and conventional noise 
analysis. They may include vibration and 
machinery operational data, usually acquired 
from the internal CAN-bus or similar [9]. This 
gives an enhanced insight of the machinery noise, 
especially experienced by the users and operators.  
Several methods of source identification and 
component analysis may be used at this stage, and 
they are critical for the successful identification of 
the noise sources and their contributions. Their 
functionality is a topic for another study, and this 
issue has been discussed at the latter part of this 
paper.  
The target for the psychoacoustic noise source 
ranking is to find out the most important and 
annoying noise sources from the user or operator 
point of view, and to be able to improve the noise 
situation according to this information.  So, the 
connection of the identified noise sources to real 
machinery parts and machinery operations is 
vitally important, to gain benefits of this 
evaluation.  
To establish such connection it is important to 
have correct evaluation criteria. In case of the 
psychoacoustic ranking the evaluation criteria are 
directly linked to the human experienced noise at 
certain locations. When the importance of the 
noise sources is ranked to an order, it is possible 
to make changes to either the model or a real 
machinery, or both.  

 
Figure 2. The psychoacoustic evaluation procedure. 
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The fastest loop to evaluate the changes, albeit in 
somewhat inaccurate way is to change the 
simulation model or directly the parameters of an 
audible model. Such parameters may simply 
include the static relative volumes of partial noise 
sources. Or, they may be more elaborated and also 
change in the time or frequency domain. This may 
already give enough information how the 
machinery should be developed further.  
Based on this information, it is possible to make 
actual changes to the machinery in refined way, 
utilising this a priori information of the noise 
sources and their contributions to the total noise.  

3. Typical source data and the evaluation 
results 

This approach has been under evaluation with 
acquired data from hard rock mining equipment 
working in real conditions. Noise, user-centric 
vibration and machinery data was acquired 
simultaneously. The noise data was analysed with 
psychoacoustic methods to obtain the noise 
annoyance for the experienced noise. The primary 
psychoacoustic parameter at the first stage has 
been loudness, and it has been compared to more 
conventional metrics.  

In Figure 3 a typical measurement and its analysis 
is presented. The horizontal axis is the time, and 
there are several analysis plots. The upper 
analysis plot is the spectrogram of the noise. This 
gives a temporal overview of the noise. This is 
important in separating the noisiest parts in the 
work cycles, and pinpoint to them instead of 
observing the mean values for the whole period of 
machinery operation. 
The middle analysis screen shows the Loudness 
[10] as a psychoacoustic parameter and compares 
it with the more conventional A-weighted sound 
pressure level with fast time-weighting, LpaF. In 
this case these 2 metrics do not differ 
considerably, but in some cases the differences 
may be important from the observer point of view. 
Finally, at the lowest screen there are vibration 
values related to the operator conditions. 
Continuing from this the next steps include 
calculation of other relevant psychoacoustic 
parameters and combination metrics, possible 
listening tests, and source separation and ranking. 
This may be carried out with several ways of 
component analysis. 
 

 

 
Figure 3. A long excerpt of several machinery noise components. 
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5. Component analysis 

Typical example of Signal Source Separation is 
“Cocktail party problem” [11]. There are several 
persons speaking simultaneously and the listener 
must recognize the speaker and follow his or her 
speech. A simplified case can be solved with 
statistical procedures, but in practice, it is a 
difficult problem for digital signal processing.  
The signal source separation is related to the 
sound and vibration analysis of machine design. 
The measured signal are linear and non-linear 
combination of several, mixed source signals. The 
aim of source separation is to estimate original 
source signals from the measurements so that 
contribution of different sources in specific 
location can be estimated. 
In Blind Source Separation (BSS) there is no a 
priori information about the generating process of 
the system. Both sources and transfer functions 
are unknown. Typical methods of BSS include 
Principal Components Analysis  [12], 
Independent Component Analysis [13], [14], 
Dependent Component Analysis [15], Stationary 
Subspace Analysis [16], Common Spatial Pattern  
[17], Factor analysis [18], Multivariate 
correlation analysis [19] and Partial least squares 
regression [20]. An extensive review of BSS can 
be found in [21], and an overview in Table . 
If there is information about the source signals or 
the mixing process, there are some more methods 
to apply. This case is usually called simply source 
separation. The methods which can exploit the 
knowledge of the system, are Linear Discriminant 
Analysis [22], some pattern recognition and 
classification methods and supervised machine 
learning algorithms. Common features used in 

supervised learning of audio voice signals are 
pitch and Mel Frequency Cepstrum Coefficients 
(MFCC). 
Principal components analysis (PCA) is 
extensively used in data analysis and image 
processing.  This is caused by the fact that its 
computation is relatively simple and it is not too 
complicated to understand.  
The main aim of using PCA in the analysis is to 
reveal internal structure of the system from which 
the data has been measured. Using the information 
it is possible reduce the dimension of the 
measured data. That will decrease the redundancy 
of data and filter some noise from the dataset.  
Independent component analysis (ICA) is also a 
statistical technique. It is related to PCA, but it is 
more effective algorithm to reveal internal 
sources particularly in cases where PCA fails 
completely. The system model is very similar to 
PCA: the measured data is generated by an 
unknown linear mixing system, where sources, 
also called latent variables, are unknown. They 
are assumed to be nongaussian and mutually 
independent. ICA decomposes multivariate data 
into independent components.  
The benefit of ICA is that the signal may remain 
in the time domain format and thus it is 
compatible with the most psychoacoustic analysis 
methods. 
Several approaches have been proposed for the 
solution of the source separation problem. PCA 
and ICA are the most successful approaches but 
they work well in cases where no delays or echoes 
are present. In practical situations, performance of 
these methods is therefore very limited and more 
advanced methods are needed.

Table I. Typical Blind Source Separation methods. 

Method  Notes  Results 

PCA  Information from second order statistics, Gaussian signals 

Scaling  sensitive,  not  removing  higher  order  dependence  ‐ 
only correlation 

Orthogonal  directions  that  represent  maximum 
variance 

ICA  High order statistics, Non‐Gaussian signals, perfect Gaussian 
sources  cannot  be  separated,  can  only  separate  linearly 
mixed  sources,  all  signals  are  equally  important,  cannot 
determine the variance of independent components 

Space where signals are maximally independent 

Directions of space not orthogonal 

DCA  Extension of ICA  Separate signals into sets which are dependent on 
signals within their own set 

SSA  Estimate  the  inverse mixing  separating  the  stationary  from 
non‐stationary 

Separate signals into stationary and non‐stationary 
components 

CSP  Windowed version of PCA  Windowed directions 
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6. Test case for Independent Component 
Analysis 

To find out the performance of a basic ICA 
algorithm in machinery acoustics a test case was 
created. The performance was evaluated with 
artificial test signals, resembling machinery noise. 
The objective was to separate 2 components that 
were emitted by 2 sources and measured by 2 
sensors. The simulated setup is illustrated in 
Figure 4.  For source 1, noise components for 3 
different cases were created (Tables Table  and 
Table ). The idea of the noise components was to 
mimic the detection of 2 sources with 2 
microphones. The source 1 had time-variable 
components whereas the source 2 was time-
invariant. Also, low-amplitude white noise was 
also added to both sources to reduce the signal-to-
noise ratio as in the real conditions. 

 
Figure 4. Test setup for ICA. 

Table II. Source 1 noise components. 

Case  Main  Components 
frequency [Hz] 

Modulation 

1  2  3  Type  Modulation 
depth 

1  100   200   300   ‐  ‐ 

2  100   200   300   Amplitude
4 Hz 

50 % 

3  100  200   300   Frequency 
0.1 Hz 

± 10 Hz 

Table III. Source 2 noise components. 

Case  Main Components  White noise 

1  2  3   

1  120 Hz  240 Hz  360 Hz  x 

2  120 Hz  240 Hz  360 Hz  x 

3  120 Hz  240 Hz  360 Hz  x 

 

 
Figure 5. Simulation model. 

Parallel to practical tests, a simulation model of 
the setup was created in Matlab (Figure 5). 
Transfer functions between the sources and 
sensors were approximated with delay lines. The 
transfer functions Hij(z) were modelled as FIR 
filters with constant magnitude and linear phase 
delay. Magnitude for H11 and H22 was equal to 1, 
whereas magnitude for H12 and H21 was 0.9, 
attenuating sound as a function of distance.  

6.1. ICA simulation results 

The simulations showed mixed results. ICA fails 
to separate the components when all the delays 
were different. Results with test case 2 are given 
in Figure 6. After ICA has been applied, the 
components are still mixed. Similar results were 
obtained with the other test signals.  
Then all delays were set equal. Such a setup is 
achieved only when the sensors are located on 
opposite sides of the source line and all distances 
are equal. In this case, ICA works perfectly and 
the two components are fully separated. Results 
with test case 2 are shown in Figure 7. 

6.2. Acoustical test results for ICA 

The test setup shown in Figure 4 was also 
assembled with 2 loudspeakers and microphones. 
The test signals were fed to the loudspeakers and 
the signals acquired by the microphones were 
processed with ICA. As expected, results were 
similar to the ones with the simulation model 
containing non-equal delays. ICA was not able to 
separate the components (Figure 8). 
As conclusion, the used ICA algorithm is 
extremely sensitive to phase delay variation of 
components. Therefore, this algorithm probably 
cannot be used in practice when the acoustic 
environment is complex and contains varying 
transfer delays from sources to measurement 
points. Improved algorithms taking into account 
the time-delayed signal should be used instead 
[23], [24]. 
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Figure 6. ICA test results with non-equal delays. 

 
Figure 7. ICA test results with equal delays. 

 
Figure 8. ICA test measurement results with loudspeakers and microphones. 
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7. Conclusions 

The analysis shows that the user centric noise 
source ranking methodology will expand the 
conventional noise ranking possibilities, because 
it allows analysis that is more detailed, and effects 
the working conditions of the operators directly. 
There are, however, some issues with the 
component analysis and source separation, where 
further studies are needed to obtain best possible 
results related to this methodology.  
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